
Hetecooper: Feature Collaboration Graph for
Heterogeneous Collaborative Perception

Congzhang Shao1 , Guiyang Luo1,B , Quan Yuan1,B , Yifu Chen1,
Yilin Liu1, Kexin Gong1, and Jinglin Li1

State Key Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing 100876, China

{shaocongzhang,luoguiyang,chenyifu,yuanquan,liuyilin10}@bupt.edu.cn,
suroooprise@gmail.com, jlli@bupt.edu.cn

Abstract. Collaborative perception effectively expands the perception
range of agents by sharing perceptual information, and it addresses the
occlusion problem in single-vehicle perception. Most of the existing works
are based on the assumption of perception model homogeneity. However,
in actual collaboration scenarios, agents use different perception model
architectures, which leads to differences in the size, number of chan-
nels and semantic space of intermediate features shared to collaborators,
bringing challenges to collaboration. We introduce Hetecooper, a collabo-
rative perception framework for scenarios with heterogeneous perception
models. To model the correlation between heterogeneous features, we
construct the feature collaboration graph, which completely preserves the
semantic information and spatial information of features. Furthermore,
a message passing mechanism based on graph transformer is designed to
transfer feature messages in the feature collaboration graph. Firstly, the
number of node channels and the semantic space are unified by the se-
mantic mapper. Then, the feature information is aggregated by the edge
weight guided attention, and finally the fusion of heterogeneous features
is realized. Test results demonstrate that our method achieves superior
performance in both model homogeneity and heterogeneity scenarios,
and also has good scalability to the change of feature size.

Keywords: Collaborative perception · Autonomous driving · Graph
transformer

1 Introduction

Collaborative perception has garnered significant attention in recent years. By
sharing perception information among agents, it can significantly expand the
perception range of agents. In the field of autonomous driving, it can effectively
mitigate the occlusion and blind spot issues that are difficult to solve in sin-
gle vehicle perception, and provide crucial support for safer driving decisions.

B: Corresponding author.

https://orcid.org/0009-0009-3935-6796
https://orcid.org/0000-0002-1912-8536
https://orcid.org/0000-0002-2552-333X
https://orcid.org/0000-0002-6720-9533

2 C. Shao, G. Luo et al.

According to the type of perceptual information shared among agents, collab-
orative perception can be divided into early fusion [16, 21, 43], which involves
sharing initial sensor sensing data. Intermediate fusion [4, 8, 13, 18, 29, 35, 37],
involves sharing intermediate features extracted from perceptual models. Late
fusion [24,32], involves sharing model detection results. Among these, intermedi-
ate fusion has gradually become the focus of attention due to the more favorable
performance-bandwidth trade-off.

Existing work on collaborative perception largely assumes the isomorphic of
perception models. However, in collaborative perception, the heterogeneity of
perception models used by different agents is an issue that cannot be ignored.
Particularly in intermediate fusion methods, when the architectures of percep-
tion models differ, the dimensions, number of channels, and semantic spaces
of intermediate features shared between agents also vary. How to seamlessly
fuse heterogeneous features remains a challenge. Existing methods [15,34] align
heterogeneous features by first matching feature dimensions through interpola-
tion/convolution methods, then aligning feature spaces using attention mech-
anisms or fine-tuning encoders, and finally integrating the features within a
unified semantic space using the original fusion module. However, the interpola-
tion/convolution methods used to align feature sizes approximate the features,
leading to information loss during the fusion process.

To address the issue of information loss in heterogeneous feature fusion, we
introduce Hetecooper, a framework for heterogeneous collaboration based on
intermediate fusion. The graph structure is leveraged to model the correlation
between heterogeneous features: The feature points are used as graph nodes, with
edges established between nodes that have spatial correlation, and this spatial
correlation is quantified as the edge weight to construct the feature collabora-
tion graph. Furthermore, a method based on the graph transformer is designed
to transfer feature messages within the feature collaboration graph: First, the se-
mantic mapper is used to unify the channel number and semantic space of graph
nodes. Then, attention is directed to aggregate the information of features by
utilizing edge weights, that is, the fusion of heterogeneous features is realized.

Experimental results indicate that Hetecooper achieves optimal performance
in the scenarios of model homogeneity and model heterogeneity. Moreover, the
trained collaborative model can also adapt well to small changes in feature
size/number of channels without adaptation. Our contributions are:

– We propose a collaborative perception framework Hetecooper, suitable for
scenarios with heterogeneous perception models. By constructing a feature
collaboration graph to model the correlations between heterogeneous fea-
tures, Hetecooper can integrally preserves the semantic information and spa-
tial information between features, achieving seamless fusion.

– To transmit messages in the feature collaboration graph, we design a graph
transformer method. Use edge weights containing spatial information to
guide attention weights, nodes can assign higher weights to information that
is more beneficial for collaboration.

Hetecooper 3

– The design of the semantic mapper and the construction method of the fea-
ture collaboration graph allow Hetecooper to automatically adapt to minor
changes in feature size and channel number without the need for adaptation,
providing good scalability.

– Experimental results demonstrated that Hetecooper exhibits excellent per-
formance in the scenarios of model homogeneity and model heterogeneity.
Moreover, it shows good scalability to minor variations in feature.

2 Related Work

Collaborative Perception. Collaborative perception has gained extensive at-
tention in recent years. By sharing perception information such as images and
lidar point clouds among agents, it expands the perception range of the agents,
thereby providing support for safer driving decisions. Early work on multi-
agent collaborative perception was done by sharing initial sensing information
[16, 17, 21, 23, 25, 43] (early fusion) or detection results [24, 32] (late fusion) be-
tween agents to achieve collaboration. However, in these two approaches, the
early fusion will bring large bandwidth consumption, and the late fusion has low
accuracy. Recently work [8, 11–14, 19, 28, 29, 35, 41] shares intermediate feature
outputs(intermediate fusion) of perception models between participating collabo-
rative vehicles and fuses features from different agents using attention [1], trans-
former [27] and other methods, and achieved a good performance-bandwidth
trade-off. In this paper, the collaborative perception between heterogeneous
agents is realized based on intermediate fusion.
Heterogeneous Agents Collaboration. Several studies have initiated explo-
rations into the issue of heterogeneity in collaborative perception. V2X-ViT [37]
addresses the heterogeneity of sensor device architecture by heterogeneous multi-
agent self-attention to fuse information across various devices. HM-ViT [31]
concentrates on the heterogeneity of perceptual data modalities, designing a 3D
graph attention method to learn fusion weights separately for the different corre-
lations between multi-modal features, effectively fusing the feature from camera
and lidar modalities. In terms of perceptual model heterogeneity, Xu [34] em-
ploys a learnable feature resizer to align features across multiple dimensions and
a sparse cross-domain transformer for domain adaptation to fuse heterogeneous
features. This paper emphasizes the collaboration of agents when the perception
model is heterogeneous. Lu [15] designed a novel extensible collaborative per-
ception framework to align features of collaborators into a unified feature space
for collaboration. However, the aforementioned methods cause a loss of feature
information due to the interpolation/convolution techniques used when merging
features of different sizes. This paper achieves lossless fusion of heterogeneous
features by constructing a feature collaboration graph.
Graph Transformer. The transformer’s exceptional performance in natural
language processing and vision has led to several attempts to apply transformer
mechanisms to graph neural networks [3, 26, 30, 42]. Dwivedi et al. [6], Kreuzer
et al. [9], and GraphiT [20] use Laplacian Eigenvectors and positive definite

4 C. Shao, G. Luo et al.

Fig. 1: Framework of Hetecooper. Comprises five stages: observation encoding,
feature sharing, feature collaboration graph construction, feature fusion, and detection
output. Dashed lines connect the feature points of neb (blue squares) and ego (yellow
squares) that exists spatial correlations.

kernels on graph adjacency matrices, respectively, as the positional encoding of
nodes. This improves the efficiency of message passing between graph nodes.
Rampašek et al. [22] propose a method to build a general, powerful, and scal-
able graph transformer, they highlight that the key to designing an efficient
graph transformer method is to distinguish the position encoding of nodes and
implement an efficient message passing mechanism. In this paper, we design
an improved graph transformer method that assigns position codes containing
spatial information to nodes and uses edge weights to guide message passing,
thereby achieving efficient fusion of heterogeneous features.

3 Method

3.1 Problem Statement

The observational information of the N collaborating agents and the correspond-
ing perception supervision labels are denoted as Oi and Yi, i = 1, 2, ..., N , respec-
tively. Our main goal in collaborative perception is to optimize the parameters in
such a way that each agent can achieve the maximum perception performance:

argmin
θi

N∑
i=1

L (Hi (Oi, {Ij−→i} ; θi) ,Yi) , where j ∈ Ni (1)

where Ni is the set of all collaborators of agent i, Hi (·) represents the perception
model utilized by agents, Ij−→i ⊂ Fj is the message that agent j send to agent
i, Fj ∈ RCj×Hj×Wj is the feature extracted from the perception model of agent
j. Fi varies in parameters, sizes, the number of channels, and semantic space.

3.2 Analysis: Collaboration Among Heterogeneous Agents

When the agents use heterogeneous perception models, the size, number of chan-
nels and semantic space of shared intermediate features are also different. At this

Hetecooper 5

Fig. 2: Schematic diagram of feature collaboration graph. (a) shows the con-
struction process of the feature collaboration graph, (b) shows the feature collaboration
graph from the BEV perspective under two different parameter settings, with the back-
ground being the point cloud observation data.

point, the challenge of intermediate fusion lies in how to precisely and efficiently
fuse heterogeneous intermediate features. A simple approach is to first align the
channel number and semantic space of intermediate features by 1x1 convolution,
and then align the feature size by sampling/convolution. After unify the feature
representation, use existing homogeneous collaborative methods such as [8, 37],
etc to fuse feature. However, an obvious problem with this approach is that the
sampling/convolution process approximately computes the heterogeneous fea-
tures and loses feature information.

To address this issue, we conduct an in-depth analysis of the physical signifi-
cance of intermediate features. The observation encoders [10,39,44] extract BEV
(Bird’s Eye View) features through the following process: First, use voxel grids
of the same size to partition the point cloud observation data. Then, a feature
representation is extracted within each grid, and these features are combined ac-
cording to their spatial relationships to obtain the 3D features F ∈ RC0×Z×H×W .
Finally, the features are concatenated along the Z-dimension, which is perpen-
dicular to the ground, to obtain the shared BEV features Fbev ∈ R(C0∗Z)×H×W .
Hence, each feature point in the intermediate features corresponds to information
from a specific pillar region in the real world.

When the collaborating agents use heterogeneous perception models, the
voxel grid sizes of the ego agent and the collaborating agents (neb) differ, leading
to different BEV feature representations for the same real-world region. We
analyze the real-world region, ego features, and neb features together, as shown
in Fig. 2. In the figure, the yellow and blue points represent the feature points
in the ego and neb BEV features, respectively. The dashed columns in Fig. 2a
and the dashed grids in Fig. 2b represent the entire pillar regions and their bases
corresponding to the feature points, respectively. Black lines connect the feature
points whose corresponding pillar regions intersect. It is evident that the pillar
regions corresponding to the feature points of the ego and neb intersect but do
not completely overlap, indicating a complex spatial correlation.

6 C. Shao, G. Luo et al.

We use a graph structure to describe this relationship: feature points are
treated as graph nodes, and edges are established between ego and neb nodes
whose corresponding pillar regions intersect, constructing a feature collaboration
graph. Subsequently, the graph transformer method is used to propagate and
aggregate feature messages within the feature collaboration graph, achieving
the fusion of heterogeneous features. Since the initial feature points are directly
used as graph nodes when constructing the feature collaboration graph, this
method ensures no information loss during the fusion process. The details of
graph construction and Graph Transformer fusion will be introduced in Sec. 3.3.

3.3 Framework

The heterogeneous collaborative perception framework Hetecooper proposed in
this paper is illustrated in Fig. 1, including five stages: observation information
encoding, feature sharing, feature collaboration graph construction, feature fu-
sion, and detection output. Initially, the agent uses an observation encoder to
extract BEV features. Subsequently, leveraging a spatial confidence map [8], it
filters out reliable features to share with collaborators. Once feature sharing is
complete, the agent constructs a feature collaboration graph based on the spa-
tial relationships between its own features and those of the collabors. The graph
transformer is then used to propagate the collaborators’ feature information to
itself, achieving the fusion of heterogeneous features. Finally, the fused features
are input into the detection head to obtain detection outputs, thus completing
one cycle of the heterogeneous collaborative perception process.

Observation Encoding. The agent extracts the BEV feature representation
from the initial sensor data Oi by using the observation encoder Henci (·). Firstly,
voxelization is applied to the point cloud, followed by the extraction of feature
representations within each voxel grid. Then, the feature representations are
connected to form complete BEV feature representations. Subsequently, further
refinement is achieved through a 2D backbone network (such as ResNet [7], etc.),
resulting in the final BEV feature representations Fi = Henci (Oi) ∈ RCi×Hi×Wi .
The Henci (·) can be any existing observation encoder framework, such as Point-
Pillar [10], SECOND [39], etc.

Feature Sharing. Heterogeneous agents share intermediate features. To en-
hance the efficiency of heterogeneous feature fusion, agents utilize a spatial con-
fidence map generator Hconfi (·) (sharing parameters with the Detection Head)
to filter critical information from the BEV features Fi. First, use Hconfi (·) to
compute a spatial confidence map [8] Ci = Henci (Fi) ∈ [0, 1]

Hi×Wi (regions
with confidence below a threshold are set to 0, and those above the threshold
are set to 1). Then, perform element-wise multiplication between Ci and feature
Fi to obtain key information Ii = Ci ⊙ Fi ∈ RCi×Hi×Wi for transmission and
broadcast it to collaborators, thus completing the feature sharing process.

Hetecooper 7

Feature Collaboration Graph Construct. Establish a feature collaboration
graph between ego features Fi and information Ij−→i ⊂ Fj received from neigh-
boring (neb) agents based on spatial relationships between feature points. First,
according to the relative position relationship between ego and neb, warp the
neb information Ij−→i into a view centered on ego. Subsequently, compute the
base range of the pillar region M (P) corresponding to feature points Pi

m ∈ Fi

in Fi and feature points Pj
n ∈ Ij−→i in Ij−→i based on model parameter set-

tings (see detailed process in Sec. 6.1 in Appendix). Through M (P), we can
determine the spatial correlations between feature points, thereby constructing
a feature collaboration graph, specific method is as follows:

If feature points Pj
n from neb and feature points Pi

m from ego correspond to
overlapping base areas of pillar regions or their center point distance is less than
threshold, that is, satisfying either of the following two conditions:

S
(
M

(
Pi
m

)
∩M

(
Pj
n

))
> 0 (2)

dis
(
M

(
Pi
m

)
,M

(
Pj
n

))
< D (3)

then ego node Pi
m and neb node Pj

n is called to have a spatial correlation, and is
added to the node set V. And edge emn

(
Pi
m,Pj

n

)
is added to the edge set E.

Where ∩ represents the overlapping area between the base regions of two
cylindrical areas, S (·) represents the calculation of the area of the spatial region
base, D is the maximum distance threshold, and dis (·) represents the calculation
of the distance between the center points of the base regions of two cylindrical
areas. The setting of criterion Eq. (3) is aimed at establishing correlations be-
tween ego feature points and a broader range of neb feature points, providing
additional reference information for collaboration.

Furthermore, we refer to Eq. (2) as spatial correlation and Eq. (3) as proxim-
ity distance, quantifying each of them separately to assign weights to the edges
in feature collaboration graph.

Spatial correlation: The ratio of the overlapping area of the base regions
of cylindrical areas corresponding to ego and neb nodes to the area of the base
region corresponding to ego nodes.

spcmn =
S
(
M

(
Pi
m

)
∩M

(
Pj
n

))
S (M (Pi

m))
(4)

where S(·) represents the area of the bottom surface of the calculated spatial
region, M(·) denotes the corresponding spatial region of nodes, and ∩ signifies
the overlap between the two regions.

Distance proximity: The components of the distance between the center
points of the pillar regions corresponding to ego and neb nodes along the two
coordinate axes:

dxmn = abs (xn − xm) (5)
dymn = abs (yn − ym) (6)

8 C. Shao, G. Luo et al.

where (xm, ym) and (xn, yn) represent the coordinates of the center points of the
spatial regions corresponding to nodes Pi

m and Pj
n, respectively. The coordinate

system takes the ego as the origin, and the front and right sides of the ego
are positive for the y-axis and square for the x-axis, respectively. Here, the two
components of the distance are added to the edge weights respectively in order
to better distinguish the relative positions of the nodes in the corresponding
spatial regions.

Finally, by combining spatial similarity and distance proximity, we get the
weights of edge emn:

emn = (spcmn, dxmn, dymn) (7)

Fig. 3: Detailed design of the graph transformer based fusion module

Feature Fusion. The Graph Transformer has gained popularity due to its
exceptional ability to handle complex patterns. In light of this, we have designed
a fusion module Hfusei (·) based on the graph transformer to pass and aggregate
messages in feature collaboration graph. As per the analysis in [22], the key
to designing an effective graph transformer lies in distinguishing the positional
encoding of nodes and ensuring an efficient message passing mechanism. To
achieve this, we assign a positional encoding to the nodes that is related to the
spatial distance, and then guide the nodes’ attention through the edge weights,
assigning higher weights to nodes that contribute more beneficial information to
collaboration, thereby enhancing the efficiency of feature message propagation.
Fig. 3 illustrates the detailed structure of the fusion module Hfusei (·).

Node Semantic Space Unify. Ego nodes and neb nodes originate from
different features, exhibiting differences in channel count and semantic space.
Initially, we align the feature representation of neb nodes with those of ego
nodes using a semantic mapping module Hmapi

(·). Hmapi
(·) is designed with

reference to [2] and requires separate adaptation for the Observation Encoder
of each architecture. Additionally, before the features are input into Hmapi (·),
they pass through a channel aligner module to automatically adapt to minor
variations in the number of channels. Detailed design is in Sec. 6.2 in Appendix.

Node Positional Encoding. As analyzed in Sec. 3.2, each feature point in
the BEV features corresponds to information within a certain pillar region in the
real world. We introduce position encodings related to spatial information for
the nodes P to distinguish between different nodes. If the number of channels for
node P is C, and the distance from the center of the base of the corresponding

Hetecooper 9

pillar region to the center of the ego agent is DP , then its positional encoding is
calculated as follows:

PE (DP) =

sin
(
DP/10000

2c
C

)
, c = 2k

cos
(
DP/10000

2c
C

)
, c = 2k + 1

(8)

Subsequently, we process PE (DP) through a fully connected layer f and add it
to the node P to obtain the node representation with distance information.

P = P + f (PE (DP)) (9)

Edge weights guide attention. Aggregating neb node information into
the ego node. For an ego node Pi

m, if the set of its neighboring nodes in the
feature collaboration graph is denoted as Am, then for each Pj

n ∈ Am, we first
calculate the initial attention weight:

amn =
WQPi

m ⊙WKPj
n√

C
(10)

where WQ ∈ RC×C and WK ∈ RC×C are used to generate the query and key vec-
tors, respectively. C denotes the number of channels in the node representation,
and ⊙ signifies the execution of the Hadamard Product on the vector.

Then, we compute the corrective term of attention derived from the edge
weights emn = (spcmn, dxmn, dymn):

cmn =
(spcmn + 1)

2
· (PE (dxmn) ||PE (dymn)) (11)

where PE(·) denotes the positional encoding, calculated in the same way as in
Eq. (8), with the value of C set to half the number of feature channels of the
node. || denotes the concatenation of two vectors. By concatenating the vectors
obtained from the cosine and sine decomposition of the proximity in distance
dxmn and dymn, we obtain a vector with the same dimensions as the nodes. This
vector is then multiplied by the spatial correlation spcmn plus 1 and divided by
2, resulting in the attention weight correction term cmn. Adding 1 to spcmn

is to prevent the inability to utilize edge weight information when spcmn is 0.
Dividing by 2 is to normalize the value after adding 1 to spcmn.

After passing through the fully connected layer g, the attention modifier cmn

is added to amn, yielding the final attention weight wmn:

wmn = amn + g (cmn) (12)

Subsequently, the value vectors of all ego’s adjacent nodes Pj
n ∈ Am are mul-

tiplied by the weights w′
mn = softmaxn (wmn), obtained from wmn by softmax

normalization, and obtain the ego node that aggregates the neb information:

P ′im =
∑

n∈Am

w′
mnWV Pj

n (13)

10 C. Shao, G. Luo et al.

where WV ∈ RC×C are used to generate the value vector.
Finally, the updated node representation Pi

m is reassembled according to
its index in the ego feature Fi, that is, the ego feature Fij after fusing neb
information Ij−→i is obtained.

Multi-scale collaboration. To capture the correlation between the voxel-
level and the target contour level within the heterogeneous features, we integrate
neb information across various scales. We employ the Split-atten method [40] to
combine the fusion results Fs

ij , where s = 1, 2, .., S, from different scales to obtain

F ′
ij = Split

({
Fs

ij

}S

s=1

)
. The detailed process is in Sec. 6.4 in Appendix.

Finally, we perform cross-attention between the ego and each neb’s fused
feature F ′

ij , and by applying a feed forward layer, we derive the ego feature that
integrates all neb information:

F ′
i = FeedForward

(
ATTEN

(
F ′

ij

))
, j ∈ Ni (14)

Detection Output. The detection results Di = Hheadi (F ′
i) ∈ RH×W×7 are

decoded from the fused features F ′
i . Here, Di = (cls, x, y, z, len, cos θ, sin θ) rep-

resents the rotation box with categories, the elements in the parentheses denote
the class, position coordinates, target length, and rotation angle, respectively.

3.4 Training

The training of Hetecooper is divided into two steps. In the first step, the model
is set to be homogeneous, learning all model parameters. In the second step,
the model is set to be heterogeneous, keeping the parameters of observation
encoder Henci(·) unchanged, while adapting a set of parameters of fusion module
Hfusei(·) and detection head Hheadi(·) for each architecture. Both training steps
use the loss between the detection outputs and the labels for supervised training.

L =

N∑
i=1

Ldet (Di,Yi) (15)

where Di is the detection output, Yi presents the label of the observation infor-
mation Oi corresponding to agent i, and Ldet denotes the detection loss.

4 Experiment

4.1 Dateset

OPV2V. OPV2V [38] is a large-scale open dataset for perception with V2V
communication. By utilizing a cooperative driving co-simulation framework named
OpenCDA [33] and CARLA [5] simulator, it collect divergent scenes with vari-
ous numbers of connected vehicles. OPV2V has 73 scenes, 6 road types, 9 cities,
12K frames of LiDAR point clouds , 230K annotated 3D bounding box.
V2V4Real. Test results on V2V4Real [36] are presented in Sec. 6.6 in Appendix.

Hetecooper 11

Table 1: Comparison when architecture of observation encoders are dif-
ferent. The terms on the left and right sides of the "-" represent the names of the
observation encoders used for the ego and neb, respectively. Results are reported in
AP@0.50/AP@0.70. Since the performance of the collaboration method is related to
the proportion of heterogeneous agents in the scenario, we uniformly set the maximum
number of vehicles in the scenario to 2 to eliminate the influence of unrelated variables.

Observation Encoder Collaborative Method
Hetecooper HM-ViT MDPA Where2comm Fcooper

SECOND 0.863/0.759 0.841/0.647 0.831/0.783 0.838/0.783 0.845/0.772
VoxelNet 0.812/0.731 0.632/0.483 0.794/0.726 0.794/0.726 0.758/0.685

PointPillar 0.851/0.713 0.811/0.727 0.816/0.722 0.816/0.722 0.809/0.711
PointPillar - SECOND 0.851/0.735 0.808/0.727 0.788/0.673 0.706/0.560 0.679/0.594
PointPillar - VoxelNet 0.822/0.724 0.788/0.659 0.675/0.535 0.678/0.549 0.674/0.552
SECOND - PointPillar 0.859/0.748 0.833/0.691 0.822/0.722 0.729/0.632 0.708/0.622
Voxelnet - PointPillar 0.816/0.701 0.699/0.526 0.789/0.690 0.670/0.568 0.607/0.506

4.2 Experimental Setup

Architecture of observation encoder. The architectures included in this
study are PointPillar [10], SECOND [39], and VoxelNet [44]. The default voxel
grid sizes in model parameters for these architectures are set to [0.4, 0.4, 0.4],
[0.4, 0.4, 0.4], and [0.1, 0.1, 0.1] (in meters), respectively.
Baseline. We compare Hetecooper with HM-ViT [31], MDPA [34](which is ap-
plied in Where2comm), Where2comm [8] and F-cooper [4]. The latter two fusion
methods are designed under the assumption of model homogeneity and cannot
directly fuse heterogeneous features. Therefore, we first use the simple method
mentioned in Sec. 3.2 to align the feature representations, and then use the orig-
inally designed fusion module to integrate the features from the collaborators,
detailed procedures and training methods are in Sec. 6.3 in Appendix.

4.3 Quantitative Analysis

Observation encoder architecture heterogeneity. As shown in Tab. 1, we
compare the performance of Hetecooper with other collaborative methods when
observation encoder architectures are heterogeneous. It is evident that Hete-
cooper outperforms the others under conditions of model heterogeneity (lines
4-7), effectively minimizing the impact of heterogeneity on collaboration. This
is because Hetecooper constructs the feature collaboration graph by directly us-
ing feature points as graph nodes, preserving the complete feature information,
whereas other methods approximate the features, leading to information loss.
On the other hand, the attention mechanism, guided by edge weights, enhances
the efficiency of feature information transfer. And assign higher weights to the
information that is more beneficial for collaboration at the nodes.

Besides, under conditions of model homogeneity (lines 1-3), Hetecooper also
achieves the best performance at AP@0.5. This is because the feature collab-

12 C. Shao, G. Luo et al.

oration graph, when constructed, includes all neb nodes within the distance
threshold in the attention scope of the ego node, providing a wealth of reference
information for collaboration. Here, we do not compare with HEAL [15], this
is because HEAL collaborates in a negotiated common feature space, whereas
other methods collaborate directly in the local semantic space, which is unfair.

Table 2: Parameter settings. observa-
tion encoder architecture is PointPillar

Parameters Voxel Size
(vx, vy, vz)

Output Channel Feature Size
(C, H, W)

p1 0.4, 0.4, 4 256 256, 50, 176
p2 0.3, 0.3, 4 256 256, 66, 234
p3 0.6, 0.6, 4 256 256, 33, 117
p4 0.6, 0.6, 4 272 272, 33, 117
p5 0.4, 0.4, 4 272 272, 50, 176

Table 3: Ablation experiment of fea-
ture fusion module.

NPE MS EGA AP@0.5 AP@0.7
Homo Hete

0.774 0.586 0.808 0.668
✔ 0.805 0.644 0.844 0.692
✔ ✔ 0.831 0.721 0.845 0.725
✔ ✔ ✔ 0.852 0.713 0.851 0.735

Table 4: Extensibility of Hetecooper. Both ego and neb use the PointPillar ar-
chitecture for observation encoders, and MDPA is based on the Where2comm method.
Homo - xx stands for model homogeneity, Hete - xx for model heterogeneity.

Collaborative Method
Parameters

AP@0.5 AP@0.7
p1(ego) p2 p3 p4 p5 p1(ego) p2 p3 p4 p5

Homo - Hetecooper 0.852 0.829 0.833 0.830 0.848 0.713 0.726 0.674 0.634 0.693
Homo - MDPA 0.816 0.816 0.789 0.815 0.799 0.722 0.717 0.612 0.660 0.696

Hete - Hetecooper - 0.869 0.586 0.608 0.488 - 0.701 0.406 0.467 0.480
Hete - MDPA - 0.726 0.544 0.693 0.219 - 0.554 0.377 0.551 0.160

Extensibility. In order to test the scalability of Hetecooper when there are small
differences in the size and number of channels of shared features due to different
parameter settings with the same model architecture, we compare Hetecooper
with MDPA. During training, the parameters of the ego node were set to p1 and
adapted with the neb nodes set to p2 to obtain the fusion model.

Since the nodes in the feature collaboration graph are directly taken from the
initial intermediate features and are independent of feature size, and the design
of the channel aligner allows Hetecooper to adapt to any number of feature
channels, the trained Hetecooper collaboration model can automatically adapt
to minor variations in feature size and channel count without requiring further
adaptation. We directly collaborated the fusion model adapted with p2 with the
neb settings p3, p4, and p5. The results are shown in Tab 4. It is evident that
Hetecooper outperforms MDPA when collaborating with neb whose parameters
are set as p2, p3, and p5, demonstrating better adaptability to minor variations
in size and channels.
Localization Error Robustness. We further evaluated the performance of
Hetecooper and the baseline in scenarios with localization errors, as depicted
in Fig. 4. As the localization error increases, the performance of all collabora-
tion methods declines. However, Hetecooper consistently outperforms the others.

Hetecooper 13

Fig. 4: Robustness to positioning er-
rors. PointPillar and SECOND are used
as observation encoders for ego and neb,
respectively.

Fig. 5: Visualization of feature col-
laboration graph. Ego and neb use
PointPillar and SECOND observation en-
coders, respectively.

Fig. 6: Visualization of feature collaboration graph. Ego and neb use PointPillar
and SECOND observation encoders, respectively.

This is because Hetecooper, when constructing the feature collaboration graph,
associates the ego node with all neb nodes within the distance threshold, in the
presence of localization errors, Hetecooper can still potentially incorporate the
original corresponding neb nodes into the ego node’s attention, enabling the ego
node to incorporate information that is useful for collaboration.

4.4 Qualitative Analysis

Feature Collaboration Map Visualization. Fig. 6 shows the process of con-
structing a feature collaboration graph. In the scene, the ego vehicle is moving
from the ramp to the main road and cannot see the vehicles in the red circle due
to road obstruction. The ego’s collaborator neb are on the main road, and the
vehicles within the red circle are within the field of its view. Fig. 6b and Fig.
6d display the feature representations taken by the ego and neb, respectively.
Fig. 6c presents the representation of neb features after being refined by the
semantic mapping module, highlighting that the semantic mapping module can
significantly reduces the semantic difference between ego and neb. Upon receiv-

14 C. Shao, G. Luo et al.

ing the neb features, ego creates a collaborative feature graph using the spatial
correlation between feature points. We sum up the attention correction terms
calculated by Eq. (11) between the ego node and all its neighbors to obtain a
one-dimensional matrix and visualize it, as is shown in Fig. 6e. As observed, the
feature collaboration graph incorporates the features of vehicles within the red
circle into its nodes, effectively filling the blind spots in the ego’s field of view.

4.5 Ablation Studies

Ablation Study with Feature Fusion Modules. To test each component’s
impact in the graph transformer, we integrated node position encoding (NPE),
multi-scale fusion (MS), and edge weight-guided attention (EGA) into the graph
transformer step by step. We then evaluated their collaborative performance
under both model heterogeneity (PointPillar for ego, SECOND for neb) and
model homogeneity conditions (PointPillar for both ego and neb), as shown in
Tab. 3. All components were found to improve the collaboration effect under
model heterogeneity and homogeneity. This is because the positional encoding
introduces distance information to the nodes, effectively differentiating between
different nodes; multi-scale fusion creating feature collaboration graphs at differ-
ent scales, richer correlations among heterogeneous features are modeled; edge
weight-guided attention allows nodes to assign higher weights to information that
is more beneficial for collaboration. These components collectively improve the
efficiency of feature message passing and aggregation in the graph transformer,
thereby enhancing collaborative performance.
Number of Agents. Fig. 5 displays Hetecooper’s performance under both
model heterogeneity and homogeneity conditions as the maximum number of
vehicles in the scene changes. It’s observed that Hetecooper’s performance im-
proves as the number of vehicles increases. This improvement is attributed to
the fact that more vehicles offer more reference information for collaboration.
However, in some instances, detection accuracy declines as the number of ve-
hicles grows. This may be due to the inconsistency in feature representations
among different collaborators, which interferes with originally effective informa-
tion during the fusion process, leading to a decrease in fusion accuracy.

5 Conclusion

This paper is focused on addressing the issue of collaborative perception in sce-
narios involving heterogeneous perception models, We introduce Hetecooper, a
framework for heterogeneous collaborative perception that relies on intermedi-
ate fusion. The feature collaboration graph is employed to model the correlation
among heterogeneous features, thereby preserving the entirety of the semantic
information and spitial information. To improve the efficiency of feature mes-
sage passing in the feature collaboration graph, we designed an improved Graph
Transformer method that uses edge weights to guide attention weights, enabling
the lossless and efficient fusion of heterogeneous features. Extensive experiments
show the superior performance and good practicability of the proposed method.

Hetecooper 15

Acknowledgments

This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2023YFB4301904, in part by the Natural
Science Foundation of China under Grant 62102041, Grant 62272053 and Grant
62001054, in part by the Young Elite Scientists Sponsorship Program by China
Association for Science and Technology (CAST) under Grant 2022QNRC001,
and in part by the Beijing Nova Program under Grant 20230484364.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Pro-
ceedings of ICML workshop on unsupervised and transfer learning. pp. 37–49.
JMLR Workshop and Conference Proceedings (2012)

3. Chen, D., O’Bray, L., Borgwardt, K.M.: Structure-aware transformer for graph
representation learning. In: International Conference on Machine Learning (2022),
https://api.semanticscholar.org/CorpusID:246634635

4. Chen, Q., Ma, X., Tang, S., Guo, J., Yang, Q., Fu, S.: F-cooper: Feature based co-
operative perception for autonomous vehicle edge computing system using 3d point
clouds. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing.
pp. 88–100 (2019)

5. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: Carla: An open
urban driving simulator. In: Conference on Robot Learning (2017), https://api.
semanticscholar.org/CorpusID:5550767

6. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699 (2020)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. Hu, Y., Fang, S., Lei, Z., Zhong, Y., Chen, S.: Where2comm: Communication-
efficient collaborative perception via spatial confidence maps. Advances in neural
information processing systems 35, 4874–4886 (2022)

9. Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., Tossou, P.: Rethinking
graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems 34, 21618–21629 (2021)

10. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 12697–12705 (2019)

11. Lei, Z., Ren, S., Hu, Y., Zhang, W., Chen, S.: Latency-aware collaborative per-
ception. In: European Conference on Computer Vision (2022), https://api.
semanticscholar.org/CorpusID:250627145

12. Li, Y., Ren, S., Wu, P., Chen, S., Feng, C., Zhang, W.: Learning distilled collabora-
tion graph for multi-agent perception. Advances in Neural Information Processing
Systems 34, 29541–29552 (2021)

13. Liu, Y.C., Tian, J., Glaser, N., Kira, Z.: When2com: Multi-agent perception via
communication graph grouping. In: Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition. pp. 4106–4115 (2020)

https://api.semanticscholar.org/CorpusID:246634635
https://api.semanticscholar.org/CorpusID:5550767
https://api.semanticscholar.org/CorpusID:5550767
https://api.semanticscholar.org/CorpusID:250627145
https://api.semanticscholar.org/CorpusID:250627145

16 C. Shao, G. Luo et al.

14. Liu, Y.C., Tian, J., Ma, C.Y., Glaser, N., Kuo, C.W., Kira, Z.: Who2com: Collab-
orative perception via learnable handshake communication. In: 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 6876–6883. IEEE
(2020)

15. Lu, Y., Hu, Y., Zhong, Y., Wang, D., Chen, S., Wang, Y.: An extensible framework
for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964
(2024)

16. Luo, G., Shao, C., Cheng, N., Zhou, H., Zhang, H., Yuan, Q., Li, J.: Edgecooper:
Network-aware cooperative lidar perception for enhanced vehicular awareness.
IEEE Journal on Selected Areas in Communications (2023)

17. Luo, G., Shao, C., Cheng, N., Zhou, H., Zhang, H., Yuan, Q., Li, J.: Edge-
cooper: Network-aware cooperative lidar perception for enhanced vehicular aware-
ness. IEEE Journal on Selected Areas in Communications 42(1), 207–222 (2024).
https://doi.org/10.1109/JSAC.2023.3322764

18. Luo, G., Zhang, H., Yuan, Q., Li, J.: Complementarity-enhanced and redundancy-
minimized collaboration network for multi-agent perception. Proceedings of
the 30th ACM International Conference on Multimedia (2022), https://api.
semanticscholar.org/CorpusID:252782950

19. Luo, G., Zhang, H., Yuan, Q., Li, J.: Complementarity-enhanced and redundancy-
minimized collaboration network for multi-agent perception. In: Proceedings of the
30th ACM International Conference on Multimedia. pp. 3578–3586 (2022)

20. Mialon, G., Chen, D., Selosse, M., Mairal, J.: Graphit: Encoding graph structure
in transformers. arXiv preprint arXiv:2106.05667 (2021)

21. Qiu, H., Huang, P., Asavisanu, N., Liu, X., Psounis, K., Govindan, R.: Auto-
cast: Scalable infrastructure-less cooperative perception for distributed collabora-
tive driving. arXiv preprint arXiv:2112.14947 (2021)

22. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe
for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems 35, 14501–14515 (2022)

23. Rauch, A., Klanner, F., Rasshofer, R., Dietmayer, K.: Car2x-based perception in
a high-level fusion architecture for cooperative perception systems. In: 2012 IEEE
Intelligent Vehicles Symposium. pp. 270–275. IEEE (2012)

24. Rawashdeh, Z.Y., Wang, Z.: Collaborative automated driving: A machine learning-
based method to enhance the accuracy of shared information. 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC) pp. 3961–3966
(2018), https://api.semanticscholar.org/CorpusID:54460348

25. Rockl, M., Strang, T., Kranz, M.: V2v communications in automotive multi-sensor
multi-target tracking. In: 2008 IEEE 68th Vehicular Technology Conference. pp. 1–
5. IEEE (2008)

26. Rong, Y., Bian, Y., Xu, T., yang Xie, W., Wei, Y., bing Huang, W., Huang, J.: Self-
supervised graph transformer on large-scale molecular data. arXiv: Biomolecules
(2020), https://api.semanticscholar.org/CorpusID:226191736

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

28. Wang, T., Chen, G., Chen, K., Liu, Z., Zhang, B., Knoll, A., Jiang, C.: Umc:
A unified bandwidth-efficient and multi-resolution based collaborative perception
framework. arXiv preprint arXiv:2303.12400 (2023)

29. Wang, T.H., Manivasagam, S., Liang, M., Yang, B., Zeng, W., Urtasun, R.: V2vnet:
Vehicle-to-vehicle communication for joint perception and prediction. In: Computer

https://doi.org/10.1109/JSAC.2023.3322764
https://doi.org/10.1109/JSAC.2023.3322764
https://api.semanticscholar.org/CorpusID:252782950
https://api.semanticscholar.org/CorpusID:252782950
https://api.semanticscholar.org/CorpusID:54460348
https://api.semanticscholar.org/CorpusID:226191736

Hetecooper 17

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16. pp. 605–621. Springer (2020)

30. Wu, Z., Jain, P., Wright, M.A., Mirhoseini, A., Gonzalez, J., Stoica, I.: Rep-
resenting long-range context for graph neural networks with global attention.
ArXiv abs/2201.08821 (2022), https://api.semanticscholar.org/CorpusID:
246210055

31. Xiang, H., Xu, R., Ma, J.: Hm-vit: Hetero-modal vehicle-to-vehicle cooperative
perception with vision transformer. arXiv preprint arXiv:2304.10628 (2023)

32. Xu, R., Chen, W., Xiang, H., Xia, X., Liu, L., Ma, J.: Model-agnostic multi-agent
perception framework. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). pp. 1471–1478. IEEE (2023)

33. Xu, R., Guo, Y., Han, X., Xia, X., Xiang, H., Ma, J.: Opencda: An open coop-
erative driving automation framework integrated with co-simulation. 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC) pp. 1155–1162
(2021), https://api.semanticscholar.org/CorpusID:260953729

34. Xu, R., Li, J., Dong, X., Yu, H., Ma, J.: Bridging the domain gap for multi-agent
perception. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). pp. 6035–6042. IEEE (2023)

35. Xu, R., Tu, Z., Xiang, H., Shao, W., Zhou, B., Ma, J.: Cobevt: Cooperative
bird’s eye view semantic segmentation with sparse transformers. arXiv preprint
arXiv:2207.02202 (2022)

36. Xu, R., Xia, X., Li, J., Li, H., Zhang, S., Tu, Z., Meng, Z., Xiang, H., Dong, X.,
Song, R., et al.: V2v4real: A real-world large-scale dataset for vehicle-to-vehicle co-
operative perception. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 13712–13722 (2023)

37. Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M.H., Ma, J.: V2x-vit: Vehicle-to-
everything cooperative perception with vision transformer. In: European confer-
ence on computer vision. pp. 107–124. Springer (2022)

38. Xu, R., Xiang, H., Xia, X., Han, X., Li, J., Ma, J.: Opv2v: An open benchmark
dataset and fusion pipeline for perception with vehicle-to-vehicle communication.
In: 2022 International Conference on Robotics and Automation (ICRA). pp. 2583–
2589. IEEE (2022)

39. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sen-
sors 18(10), 3337 (2018)

40. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller,
J., Manmatha, R., et al.: Resnest: Split-attention networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 2736–2746
(2022)

41. Zhang, H., Luo, G., Li, Y., Wang, F.Y.: Parallel vision for intelligent transporta-
tion systems in metaverse: Challenges, solutions, and potential applications. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 53(6), 3400–3413 (2023).
https://doi.org/10.1109/TSMC.2022.3228314

42. Zhang, J., Zhang, H., Sun, L., Xia, C.: Graph-bert: Only attention is needed for
learning graph representations. ArXiv abs/2001.05140 (2020), https://api.
semanticscholar.org/CorpusID:210698881

43. Zhang, X., Zhang, A., Sun, J., Zhu, X., Guo, Y.E., Qian, F., Mao, Z.M.: Emp:
edge-assisted multi-vehicle perception. Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking (2021), https://api.
semanticscholar.org/CorpusID:238997956

https://api.semanticscholar.org/CorpusID:246210055
https://api.semanticscholar.org/CorpusID:246210055
https://api.semanticscholar.org/CorpusID:260953729
https://doi.org/10.1109/TSMC.2022.3228314
https://doi.org/10.1109/TSMC.2022.3228314
https://api.semanticscholar.org/CorpusID:210698881
https://api.semanticscholar.org/CorpusID:210698881
https://api.semanticscholar.org/CorpusID:238997956
https://api.semanticscholar.org/CorpusID:238997956

18 C. Shao, G. Luo et al.

44. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4490–4499 (2018)

6 Appendix

6.1 Calculation of the Spatial Range of Pillar Regions
Corresponding to Feature Points

As stated in Sec. 3.2, the spatial correlation between nodes needs to be judged ac-
cording to whether the bottom surface of the cylindrical space area corresponding
to the nodes is intersected. We calculate the spatial range of the bottom sur-
face of the pillar regions M (P) corresponding to the feature points based on
the voxel grid size settings in the model parameters and the ratio of the BEV
feature dimensions before and after refinement by the backbone network. Below
is the detailed process:

If the voxel grid size in the model parameters is set to [vx, vy, vz], the size of
the initial BEV feature is set to Finit is [C1, H1,W1], and the size of the BEV
feature Frefine after refined by the backbone network is set to [C2, H2,W2].
Thus, for the feature point at index (i, j) within Frefine, the size of the bottom
surface of the corresponding cylindrical space M (P) is determined by:

lenx = vx · W1

W2
(16)

leny = vy ·
H1

H2
(17)

the coordinates (x, y) representing the center point of the bottom surface of the
cylindrical space region in the Cartesian coordinate system is determined by:

x =

(
j + 0.5− W2

2

)
· lenx (18)

y =

(
H2

2
− i− 0.5

)
· leny (19)

where Cartesian coordinate system takes the intelligent vehicle ego as the coor-
dinate origin, and the front and right sides of the ego are the positive directions
of the Y -axis and the X-axis, respectively.

Given the size (lenx, leny) and the central coordinates (x, y) of the cylin-
drical space region M (P), we can determine whether there is an intersection
between the bottom surfaces of the pillar regions corresponding to the feature
points, which reveals the spatial relationships between the feature points, thereby
enabling the construction of the feature collaboration graph.

It is worth noting that, due to the uncertainty in model parameter settings
and BEV feature sizes, we have also developed a dedicated CUDA operator to
calculate the range of the bottom surface of the spatial regions M (P) corre-
sponding to feature points in real-time.

Hetecooper 19

Fig. 7: Visualization of spatial regions corresponding to feature points. The
gray grid represents the the bottom surface of the pillar region M (P) corresponding
to the feature points, and the blue cylinders represent the cylindrical spatial regions
corresponding to the feature points P.

6.2 Semantic Mapper

In the feature collaboration graph, the number of channels and the semantic
space exists difference between the nodes

{
Pj
n

}
⊂ RCj from neb and the nodes{

Pi
m

}
⊂ RCi from ego. To address this, we have designed a semantic mapper,

inspired by the autoencoder [2] structure. This mapper adjusts the number of
channels and semantic space of neb nodes to align with the architecture of ego
nodes, as depicted in Fig. 8.

Network Structure. The semantic mapper is made up of two sets of 1x1
convolutions. For a node Pj

n from neb, its dimension is initially reduced by
the first group of two 1x1 convolutions, resulting in a low-dimensional hidden
variable. Then, this hidden variable’s dimension is increased to match that of
the ego node Pi

m using another set of two 1x1 convolutions in the second group.
In this way, the number of node channels and the semantic space in the feature
collaboration graph are unified.

There are various types of architectures for the observation encoder used
by agents (such as PointPillar [10], SECOND [39], etc.). We train a standard
semantic mapper H(arc)

mapego (·) for each type of observation encoder architecture.

Channel Aligner. In real scenarios, the intermediate features extracted by
observation encoders with the same architecture may still have slight differences

20 C. Shao, G. Luo et al.

Fig. 8: Semantic mapper. The two sets of 1x1 convolutions is used to map the node
representation to be the same as that of the ego node. Before the convolution layers,
a Channel Aligner adapts to slight variations in the number of channels by randomly
dropping or padding channels.

in the number of channels due to different parameter settings. To tackle this
problem, we integrate a channel aligner [34] before the H(arc)

mapego (·) to adapt to
minor changes in the number of feature channels.

For node Pj
n from neb, if the number of channels matches the input dimen-

sion of the standard semantic mapper H(arc)
mapego (·), it is directly inputted into the

mapper. However, if the number of channels does not align with the input dimen-
sion of H(arc)

mapego (·), channels are either added or removed at random to ensure
the channel number of Pj

n matches the standard mapper’s input dimension, and
input to H(arc)

mapego (·). The integration of a channel aligner enhances Hetecooper’s
adaptability in real-world applications, allowing it to automatically adjust to
minor variations in feature channel numbers without the need to retraining the
model.

Training. In Hetecooper’s collaboration framework, the semantic mapper and
the fusion module’s parameters are adjusted during the second phase of training,
as described in Sec. 3.4.

6.3 Collaboration Methods of Baseline Under Model Heterogeneous
Conditions.

In Baseline’s Where2comm [8] and Fcooper [4], the collaborative method is de-
signed based on the assumption of model homogeneity, which doesn’t support
direct fusion of heterogeneous features. To adapt the baseline method for models
heterogeneous conditions, we first standardize the feature channel numbers and
semantic spaces using the semantic mapper mentioned in Sec. 6.2 in Appendix.
Subsequently, we align the feature dimensions using bilinear interpolation meth-

Hetecooper 21

ods. After unifying the feature representations, we then use the original fusion
module to merge the features from collaborators.

At this point, the training process of the baseline also consists of two stages:
First, we train the observation encoder, fusion module, and detection head un-
der the setting of model homogeneity. Second, we adapt a H(arc)

mapego (·) for each
observation encoder architecture. Here’s the detail process:

i) Input the perception data into the observation encoders Hencego (·) for the
ego and Hencneb

(·) for the neb, respectively. Then the intermediate features
Fego and Fneb is yield.

ii) Input the neb feature Fneb into the semantic mapping module H(arc)
mapego (·)

to align the number of channels and the semantic representation, resulting
in F ′

neb = H(arc)
mapego (Fneb).

iii) Adjust the size of F ′
neb to match Fego through bilinear interpolation, result-

ing in F ′′
neb = Bilinear (F ′

neb).
iv) Calculate the root mean square error between Fego and F ′′

neb to serve as the
training loss:

L = MSE
(
Fego,F

′′

neb

)
v) Update the parameters of the feature mapper H(arc)

mapego (·), while keeping the
parameters of observation encoders Hencego (·) and Hencneb

(·) unchanged.

6.4 Multi-scale Collaboration.

There exist voxel-level and object contour-level correlations between features. To
capture richer correlations between heterogeneous features, we construct feature
collaboration graphs at multiple spatial scales. The detailed process is as follows:

For the feature Fi ∈ RHi×Wi×Ci from ego and the information Ij→i ∈
RHj×Wj×Cj from neb. We divide them into tensors with dimensions of (Ci ×
Ps × Ps, Hi

Ps
, Wi

Ps
) for ego and

(
Cj × Ps × Ps,

Hj

Ps
,
Wj

Ps

)
for neb, using the patch

size Ps × Ps, where s = 1, 2, ..., S. These tensors can be thought as hyperfea-
tures with size

(
Hi

Ps
, Wi

Ps

)
and

(
Hj

Ps
,
Wj

Ps

)
, respectively. Each feature points in the

hyperfeatures are patches of size Ps × Ps, which we called as hyperpoints. The
spatial region corresponding to the hyperpoints is the sum of the cylindrical grid
regions corresponding to all the feature points in the patch Ps × Ps.

Further, we follow the method in Sec. 3.2 to construct a feature collabora-
tion graph between hyperfeatures across various scales and then propagate and
aggregated feature messages. And then the fusion result Fs

ij is obtained. During
this stage, the attention mechanisms is executed separately between the feature
points at the corresponding position of the patch Ps×Ps. Ultimately, we employ
the Split-atten method [40] to combine the results Fs

ij at various scales, produc-

ing F ′
ij = Split

({
Fs

ij

}S

s=1

)
. This process effectively aggregates the information

of collaborator features at multiple scales into ego features.

22 C. Shao, G. Luo et al.

(a) Hetecooper (b) MDPA (c) HM-ViT

(d) No Fusion (e) Where2comm (f) Fcooper

Fig. 9: Visual comparison of detection results of different collaborative
methods. The green and red boxes represent the ground-truth and the detection
results by different collaboration methods, respectively.

(a) 1 Vehicle (b) 2 Vehicles (c) 3 Vehicles (d) 4 Vehicles

Fig. 10: Visual comparison of Hetecooper detection results when the num-
ber of intelligent vehicles increases from 1 to 4. The green and red boxes rep-
resent the ground-truth and the detection results by different collaboration methods,
respectively.

6.5 Visualization of Detection Results

We visualized the detection results after collaborating using different methods.
The ego (vehicle in left-hand) and the neb (vehicle in right-hand) employs Point-
Pillar and SECOND observation encoder architecture, respectively.

Fig. 9a-h shows the visualizations of detection results witour collaboration
and with collaboration using Hetecooper, HM-ViT [31], MDPA [34], Where2comm
[8], Fcooper [4], respectively. It is easy to see that Hetecooper achieved the best
performance.

Furthermore, we evaluated the detection performance of Hetecooper as the
number of intelligent vehicles in the scene increased from 1 to 4, as shown in
Fig. 10a-d.

6.6 Test Results on the Real Dataset V2V4Real

V2V4Real [36] is the first large-scale real-world dataset for Vehicle-to-Vehicle
(V2V) cooperative perception in autonomous driving. It is collected by two ve-
hicles simultaneously in the same location, and contains 410 km of the driving

Hetecooper 23

area, 20K LiDAR, 40K RGB, and 240K annotated 3D bounding boxes across
5 vehicle classes. Intersections, highway entrance ramps, and straight city roads
are concluded.

We tested the performance of Hetecooper and the baselines on V2V4Real
when agents used heterogeneous observation encoders, as shown in Tab. 5.

Table 5: Comparison when architecture of observation encoders are different
on V2V4Real. The terms on the left and right sides of the "-" represent the names of
the observation encoders used for the ego and neb, respectively. Results are reported
in AP@0.50/AP@0.70. Since the performance of the collaboration method is related to
the proportion of heterogeneous agents in the scenario, we uniformly set the maximum
number of vehicles in the scenario to 2 to eliminate the influence of unrelated variables.

Observation Encoder Collaborative Method
Hetecooper HM-ViT MDPA Where2comm Fcooper

SECOND 0.601/0.508 0.579/0.364 0.594/0.482 0.594/0.482 0.5800/0.441
PointPillar 0.607/0.465 0.607/0.400 0.612/0.426 0.612/0.426 0.608/0.408

PointPillar - SECOND 0.569/0.443 0.543/0.425 0.543/0.423 0.550/0.428 0.558/0.415

	Hetecooper: Feature Collaboration Graph for Heterogeneous Collaborative Perception

