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Abstract—Heterogeneous Networks (HetNets) can provide
intelligent vehicles with high-bandwidth access and support
large-scale vehicle-infrastructure cooperation. However, the
spectrum allocation of HetNets faces the problem of mutual
coupling between macrocell base station (MBS) and inten-
sively deployed small-cell base stations (SBSs) which share
spectrum band. While recent research has used Multi-Agent
Deep Reinforcement Learning (MADRL) to allocate resources
for vehicle-infrastructure cooperation, it has focused solely on
intra-cell resource distribution, overlooking inter-cell resource
cooperation. Inter-cell resource cooperation in HetNets faces
significant communication overhead due to real-time link state
interaction between base stations. Additionally, timely updates
to inter-cell resource allocation policies are critical when vehic-
ular communication patterns undergo shifts. In this paper, we
propose a hierarchical cooperative resource allocation method
(HierCoop) for addressing the aforementioned challenges in
vehicular communications in HetNets. Each base station is
modeled as an agent with hierarchical structure which com-
bines coarse-grained inter-cell collaboration policies and fine-
grained inner-cell resource allocation. Specifically, the upper
layer of each agent is deployed centrally, thus enabling inter-
cell collaboration policies to be based on the abstract channel
state features extracted from the lower layers instead of the
original channel state information. Meanwhile, the lower layer
of each agent is deployed locally in base station, which executes
actual resource allocation action based on the policy formulated
by the upper layer. The experimental results demonstrate that
HierCoop can significantly enhances spectral efficiency and
communication quality.

Index Terms—heterogeneous networks, vehicular communi-
cations, resource allocation, hierarchical multi-agent reinforce-
ment learning

I. INTRODUCTION

Cellular vehicle-to-everything (C-V2X) communications
is a crucial technology for autonomous driving. It enables
real-time information sharing to achieve collaborative per-
ception and control, supporting the services required by
intelligent and connected vehicles (ICVs), including digital
twin rendering, navigation, AR/VR-based driving assistance
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and perceived data sharing, etc, which are extensive delay-
sensitive and computation-intensive and put forward more
stringent requirements at vehicles. [1] Recently, heteroge-
neous cellular networks (HetNets) have been introduced into
C-V2X to provide ubiquitous coverage and high transmis-
sion rates to vehicles. Multiple tiers of base stations are
utilized to improve the network’s spectral efficiency and
system capacity [2]. The multi-tier cellular system comprises
a macrocell base station (MBS) and multiple small-cell base
stations (SBSs). Deploying low-power SBSs can eliminate
the coverage gap between MBSs and improve the capacity of
hot spots. Due to their lower transmission power and smaller
physical size, SBSs can be deployed flexibly and share the
spectrum with MBS.

With the rise of intelligent vehicles, there’s a growing
need for better service quality, particularly in heteroge-
neous networks where spectrum allocation is complex. This
complexity arises from cross-tier interference and coupling
resource allocation challenges when macro base stations
(MBS) and small base stations (SBS) share spectrum.
Optimizing individual base stations alone cannot address
these issues. [3] A holistic, global approach is required,
but centralized solutions are computationally expensive and
slow to adapt to dynamic environments. Additionally, the
varying roles and communication requirements of SBSs,
driven by diverse channel states and associated vehicles,
create inherent heterogeneity. To prevent local optimization
problems, SBSs need not only local observations but also
information from other SBSs, resulting in significant infor-
mation overhead. Adapting collaboration policies between
base stations to changing communication patterns requires a
centralized structure that integrates global information and
guides policies for lower-tier independent base stations.

The issue of resource allocation has received substan-
tial attention from researchers who have employed various
traditional approaches, such as heuristic-based algorithms,
optimization-based algorithms [4], evolutionary algorithms
[5], and also game-theory and graph-theory based algo-
rithms [6,7]. Deep reinforcement learning excels at acquiring
highly effective state representations for tackling demanding



tasks and addressing real-world issues. In recent years,
researchers have investigated resource allocation algorithms
based on multi-agent deep reinforcement learning (MADRL)
to create automated and more precise schemes with the
aim of enhancing resource allocation efficiency in complex
environments.

Nevertheless, algorithms that demonstrate good perfor-
mance in simple environments encounter challenges in het-
erogeneous network environments with a MBS and in-
tensively deployed SBSs. Collecting complete and precise
knowledge of wireless environments, which is essential to
these algorithms, is complex due to the system’s scale,
ultra density, and heterogeneity. However, most of these
algorithms presume that all base stations are homogeneous
and possess statistically equal capabilities. This assumption
is inconsistent with HetNets, where network entities are
tremendously heterogeneous in terms of communication and
computational capabilities. Moreover, owing to the exten-
sive mobility and constant interaction among vehicles on
the road, the dynamics of the vehicular environment are
undergoing swift transformations such as weather factors and
congestion.

Based on above analysis, to solve the challenge of
resource allocation in internet of vehicles (IOV) based
HetNets, we develop a hierarchical MADRL algorithm to
allocate resource efficiently, combining coarse-grained col-
laboration policies between base stations and fine-grained
poicies within base stations. The key contributions of this
paper are as follows:
• First, in order to tackle resource management and

collaboration challenges in HetNets, we propose an re-
source allocation architecture based on the hierarchical
MADRL algorithm called HierCoop, which composed
of two levels and improves spectrum efficiency.

• Second, we developed a specific multi-agent hierarchi-
cal reinforcement learning algorithm which aids agents
in decision-making and learning at different levels,
while enabling information transmission and collabo-
ration between levels.

• Third, we conducted multiple sets of experiments
targeting different communication demand patterns
and environmental parameters, compared and analyzed
them with other methods and noticed that our algorithm
can significantly improve the performance of the system
and its adaptability to different demand patterns.

II. RELATED WORK

A. Resource Allocation in HetNets

There are extensive research on interference aware re-
source allocation in HetNets with shared spectrum. Tradi-
tional methods include heuristic search algorithms, graph
based and game theory based algorithms, algorithm based
on matching theory and so on. Zhu et al. [8] proposes a
game-theory based resource allocation algorithm where SBS
users and MBS users compete with each other to maximize
their own performance. Kim et al. [9] propose a resource

allocation scheme for dense deployed SBSs to mitigate co-
tier interference, assuming cross-tier interference as white
noise. Abdelnasser et al. [10] propose a joint resource alloca-
tion and access control method to optimize the performance
of MBS users and SBSs users by formulating an optimiza-
tion problem and obtain results through convex relaxation
and employing dual decomposition technique. Liu et al.
[11] propose a heuristic subchannel assignment algorithm
and a Taylor series and successive convex approximation-
based power allocation algorithm to solve a mixed integer
non-linear programming optimization problem in cognitive
satellite-unmanned aerial vehicle (UAV)terrestrial network.

Recent research focus on deep reinforcement learning
based methods, which have good performance in making ju-
dicious control decisions in uncertain wireless environments.
In order to enable network entities conduct optimization
actions locally, only local observation is required. Because
usually DRL based methods uses centralized training and
distributed execution policies. When training, agents use
the full connection layer of neural network for information
transmission and fusion or use global state information to
train the value function network of each agent respectively,
promoting the update of the policy network of each agent.
When the external environment changes, the intelligent agent
can quickly respond and converge based on the trained
policy. This intelligent dynamic spectrum allocation method
has great advantages over traditional algorithms in adapt-
ability to dynamic environment and real-time performance
of spectrum reallocation [12].

Liang et al. [13] proposed a DQN based distributed
algorithm to optimize the joint optimization of spectrum re-
sources and power allocation of V2X network, and proposed
a fingerprint based replay buffer mechanism to solve the
non-stationary problem. Vu et al. [14] also proposes a DQN
algorithm based on fingerprint replay buffering mechanism
to solve the spectrum resource allocation problem of the C-
V2X fleet driving system. Gundogan, et al. [15] proposes an
algorithm based on MARL to optimize the allocation of V2V
communication spectrum resources in congested scenarios.
They propose a view based position distribution as a special
state representation of agents to cope with non-stationary
characteristics. Although these works [13,14] have shown
some improvements of performance, there are still some
shortcomings. Most of the above works ignore the impact
of channel fading interference brought by the high mobility
feature of vehicular networks. For example, the authors of
[14,15] did not consider the impact of changes in environ-
mental dynamic characteristics on algorithm performance,
while the state representation proposed by Gundogan, et al.
[15] is only applicable to scenarios where vehicles move in
a single direction.

B. Hierarchical Reinforcement Learning

Currently, numerous hierarchical reinforcement learning
algorithms exist, which fall into two categories based on
their original concepts: option-based deep hierarchical rein-
forcement learning, where the lower network acquires skills,



and the upper network combines these skills for downstream
task solutions. PL et al. [16] proposed the option-critic (OC)
framework which adopts the similar structure as the actor-
critic framework. Based on the policy gradient theorem, it
maximizes the expected return by optimizing the internal
policy and interruption function of option. On the basis
of OC, Riemer et al. [17] proposes a layered option-critic
algorithm, which extends the two-layer OC framework to
the multi-layer OC framework. They applies the gradient
theorem of the option’s internal policy and the gradient
theorem of the interruption function to all levels, selects the
option from top to bottom, judges the interruption function
from bottom to top, and calls or interrupts the option layer
by layer. While another deep hierarchical reinforcement
learning framework is based on sub-objectives, where state
features are extracted using neural networks, and are taken as
the sub-objectives space. The upper level network learning
to generate sub-objectives, while the lower level network
achieves sub-objectives based on internal drivers. Schaul et
al. [18] is using an unified value function, which adds goal as
input on top of the original value function, making the value
function become the value under a certain state (or state
action) and a certain goal. Directly fitting the corresponding
hidden variables through any state and target and integrating
them into the state target value plays a generalization role.
Such hierarchical problems face prior setting problems and
is necessary to select sub-objectives reasonably to achieve
good results.

III. SYSTEM MODEL

We consider a vehicular communication heterogeneous
network based on C-V2X. As Fig. 1 shows, each C-V2X
user keeps moving and requests to send data packets to base
stations. An MBS and n SBSs denoted as N = {1, 2, . . . , n}.
V2I links leverage cellular (i.e., Uu) interfaces to connect
vehicles to BSs for high data rate services. At every time slot
t, SBSs receive requests and select for vehicles to connect to
MBS or itself, and reallocate spectrum resources for vehicles
which send requests to it. We assume the set of V2I links in
our vehicular network model are denoted by L = {1, . . . , l}
respectively.

In this HetNet model, MBS has a pool of spectrum re-
sources that it can select for connected vehicles to construct
V2I communications. Such resource pool is shared between
an MBS and all SBSs within the coverage range of MBS
for better spectrum utilization with the premise of necessary
interference control algorithm which we will study in this
work. Furthermore, we assume that any of the V2I links
(without loss of generality, we choose uplink) may use any
of the spectrum resource. Therefore, the main challenge of
the work is to design an efficient spectrum sharing algorithm
for base stations to minimize the interference between V2I
links in the environment containing vehicles of high mobility
and strong dynamics and maximize the vehicles’ possibility
of achieving their transmission goals.

As shown in Fig. 1, our architecture is divided into upper
level and lower level within agents and improves overall effi-

Collaborative policy  update

Local decision 

network

Policy

Update

network

Local 

observation

Resource 

allocation

policy

Local decision 

network

Policy

Update

network

Local 

observation

Resource 

allocation

policy

Local decision 

network

Policy

Update

network

Local 

observation

Resource 

allocation

policy

MBS

SBS1 SBS2 SBS3

Edge 

Cloud

Fig. 1. Framework of HierCoop.

ciency through hierarchical resource allocation. Specifically,
the upper layer of agents is deployed on the edge cloud
of MBS, and the lower layer of agents will be deployed
in each SBS separately. We have designed a collaborative
mechanism in the upper layer to achieve resource sharing
between agents, and transmitted the selected policies to the
lower layer, enabling agents to adaptively execute actions
based on policies in a distributed manner at the lower level.

The channel model is based on orthogonal frequency di-
vision multiplexing (OFDM) technology, which converts the
frequency selective wireless channels into multiple parallel
flat channels over different subcarriers. Several consecutive
subcarriers are grouped to form a spectrum sub-band. The
sub-bands in this model are denoted as M = {1, . . . ,m}.
Therefore, V2I links allocated to different channels do not
have interference between each other. During a coherence
time slot t, the channel power gain gl[m] on channel m of
lth V2I link is defined as follows:

gl[m] = αlhl[m], (1)

where hl is small-scale fading power component, which is
assumed to be exponentially distributed and αl is large-scale
fading parameter, including path loss and shadowing, and is
frequency independent. Interference exists only at the time
when two V2I link are assigned to same resource block.
Similarly, we denote the interfering channel from the l′th
V2I transmitter to the lth V2I receiver over the mth sub-
band as gl,l′ [m].



Therefore, the received signal-to-interference-plus-noise
ratios (SINRs) of the lth V2I link over resource block m
are expressed as

γl[m] =
Plĝl[m]

σ2 + Il[m]
, (2)

where Pl denotes transmit power of the lth V2I transmitter
over sub-band m, σ2 is the noise power, and

Il[m] =
∑
l′ ̸=l

ρl′ [m]Pl′ [m]gl,l′ [m], (3)

denotes the interference power, where ρl′ [m] is a binary
spectrum allocation indicator. ρl′ [m] = 1 implies the l′th
V2I link uses the mth sub-band and otherwise.

Capacities of the lth V2I link over sub-band m are
therefore derived as follows based on Shannon’s theorem:

Cl[m] = Wlog(1 + γl[m]), (4)

where W is the bandwidth of each spectrum sub-band.
As mentioned before, the fundamental purpose is to

make V2I links support mobile high data rate services
such as digital twins construction, and meanwhile ensure
the reliability of data package delivery to provide smooth
and reliable advanced driving service. Therefore the design
objective is to maximize the sum capacity and the success
possibility of data package delivery. The sum capacity is
defined as

∑
l Cl[m]. And the success possibility of data

package delivery can be represented using the following
formula:

Pr{
∑T

t=1

∑L
l=1 ρl[m]Cl[m, t]

T
≤ (B × L)

∆T
}, l ∈ L, (5)

where B denotes the size of V2I packages in bits and T
denotes the lifetime of the packet, the ∆T is channel coher-
ence time, and the index t is added in Cl[m, t] to indicate
the capacity of the kth V2I link at different coherence time
slots.

From the above analysis, it can be concluded that our
work’s resource allocation problem can be stated as follows:
to design a V2I spectrum resource allocation algorithms to
let base stations select spectrum for its V2I links to maximize
the sum capacity of all V2I links and the success possibility
of data package delivery defined in (5).

Therefore, an improved multi-agent reinforcement learn-
ing framework is proposed in this paper to help solve the
problem of distributed spectrum allocation of base stations.

IV. METHOD

In our resource allocation scenario described in section
III, an MBS and multiple SBSs share spectrum resource
and SBSs receive nearby vehicles’ requests and reallocate
resource at each time slot for requesting vehicle respectively.
Specifically, SBSs choose whether to connect to MBS or
itself for the vehicle and a particular frequency band. This
scenario can be modeled as a multi-agent reinforcement
learning problem. We model each SBS as an agent which
interacts with the unknown communication environment

to gain experiences and use the experiences to guide the
directions for agents to optimize their action selection. At
every step, multiple agents will take joint actions, get local
observations and exchange information to establish a deep
understanding of the environment and therefore to improve
their spectrum allocation policies. This resource allocation
problem is fully cooperative because each agent in the
environment use common optimization objective.

In this paper, we adopt the multi-agent reinforcement
learning framework. The entire process include centralized
training and distributed execution. In the training phase
when system performance-oriented reward is accessible,
agents have a shared network which collects the observation
of all agents and update the network of each agent. In
execution phase, each agent receives local observations of
environment state and selects an action according to its
trained local network on a time scale on par with the small-
scale channel fading. The specific essential factors of multi-
agent reinforcement learning are defined as follows.

A. Observation Space, Action and Reward

As mentioned earlier, each SBS is modeled as an agent
and concurrently explores the unknown environment. We
can model the scenario as an MDP mathematically. At
each coherence time step t, let the current environment
state be St which include global channel conditions and
all agents’ behaviors and is unknown to each individual
agent. Due to the fact that each SBS agent can only acquire
knowledge of the underlying environment through the output
of local observation function, let each agent k’s observation
is determined by the observation function O as O(St, k)

and take action A
(k)
t . After that, agents receive reward Rt+1

and the environment evolves to the next state St+1 with
the probability of p(St+1, R|S,A) and the new observation
O(St+1, k) is received by each agent. It deserves to be
emphasized that all agents share the same reward and are
encouraged to collaborate with each other.

The observation space of agent k contains local channel
information, which includes local channel information I , i.e.
the interference from V2I links connected to other agents
over local V2I links at time t − 1, a local observation of
resource block allocation matrix RAt−1 at time t − 1, the
remaining payload of every V2I links Bt and remaining time
Tt at time t. Wherein local channel information refers to the
interference channels from other V2I transmitters to local
receiver. Such information can be accurately estimated by
the receiver at the beginning of each time slot. Therefore, the
observation function for agent k is summed up as follows:

O(St, k) = (Bt, Tt, RAt−1, It−1). (6)

The action of resource allocation can be divided into
two parts: connect base station selection and resource block
selection. Each SBS will first select for its connected vehicle
whether to connect to MBS or simply connect to local SBS
and then choose the spectrum sub-band for the vehicle.
Therefore, the dimension of the action space is 2×M ×V ,



wherein V denotes the number of vehicles connected to the
base station.

The setting of reward, i.e., the optimization objective,
is an essential part for reinforcement learning algorithms
because the feedback from environment decides the direction
of network updating. With more reasonable rewards, the
performance of the system can be improved. In our model
above, we have two main objectives: maximizing the sum
V2I capacity and meanwhile increasing the success proba-
bility of payload delivery within a certain time constraint
T .

For the first objective, we directly compute the instan-
taneous sum capacity of all V2I links,

∑
l∈L Cl[m, t] as

defined in (3) in the reward of each time step t. As for
the latter objective, we adopt a piece wise function TCl,
which is set as 0 when a packet is transmitting and is
set to a certain constant number ϕ when transmitting is
complete. When transmission is failed, TCl is set to a
negative constant number to discourage these behaviours.
Therefore, the expression of TCl at every time step t is as
follows:

TCl =


0, Bl > 0

ϕ, Tl ≥ 0 andBl ≤ 0

−ϕ, Tl < 0 andBl > 0

(7)

The goal of reinforcement learning is to find an optimal
policy π∗, in other words, to find a mapping from states
to probabilities of selecting each action that maximizes the
expected return from any initial state, where the return, de-
noted by Gt,is defined as the cumulative discounted rewards
with a discount rate γ as follows:

Gt =

∞∑
k=0

γkRt+k+1, 0 ≤ γ ≤ 1. (8)

The γ is discount rate which indicates the importance
attached to future rewards. If setting γ to 1, the system will
attach more importance to data package delivery.

Considering the ultimate goal and learning efficiency, we
set the overall reward as follows to achieves a balance
between these two objectives.

Rt+1 =
∑
l

(λcCl[m, t] + λdTCl(t)). (9)

where λc and λd are positive weights to balance two
objectives.

B. Architecture and Learning Algorithm

At each episode, we reset the environment state and set
the payload to size B for transmission, and lasts until the
step reach to max steps in an episode. The resource allo-
cation state cause the change of small-scale channel fading
and therefore triggers a transition of the environment state
and causes each individual agents to adjust their resource
allocation actions.

By combining the characteristics of centralized and dis-
tributed DRL methods, we conduct an effective resource
allocation framework to adapt to highly changing environ-
ments and meet the different QoS requirements of vehicles.
We develop a new reinforcement learning framework called
HierCoop to train the multiple agents to learn effective
resource allocation policies.

As mentioned earlier, each SBS is modeled as an agent
with upper and lower layers, with the upper layer selecting
abstract policies for the lower layer and the lower layer
selecting specific actions based on the policies. Therefore,
HierCoop extends the option-critic architecture with hi-
erarchical structure and option mechanism to multi-agent
scenarios.

The option-critic architecture [14] abstracts the timing
of actions using the concept of option. An option ω is
represented as a triplet (Iω, πω, βω) which representing the
initial state set of options, the policy for selecting actions,
and the termination function which describe whether the
upper layer needs to replace the current option respectively,
where the option is corresponding to the upper layer policies
and the πω represents the lower layer policies. To be more
concrete, in the above HetNet secnario, the conception of
option is corresponding to the abstract policy selected by
upper layer of SBS agents to instruct selection of actions of
lower layer. The upper layers of SBS agents take global state
s and value function of lower layer as input and output the
option for lower layer centrally. While the lower layers of
SBS agents then utilize option as well as local observation
as input to select specific resource allocation actions.

Our ultimate objective is to optimize the global discounted
reward. Based on (8) and combined with option-critic, Gt

can be further represented as:

Gt =

n∑
k=0

Eθk,ωk
[

∞∑
t=0

γtrt+1|sk0 , ωk
0 ], (10)

where n represents the number of agents. For each agent k,
local observation Ok is used to approximate the current state
sk and apply it to the following text. Gt depends on policy
over options and the parameters of the option policies and
termination functions of all agents. First, the option-value
function is represented as follows:

QΩ(s, ω) =
∑
a

πω,θ(a|s)QU (s, ω, a), (11)

where a represents the action of SBSs, QU is the value
function of conducting an action with local observation and
option selected by QΩ(s, ω), i.e., the upper layer of SBSs:

QU (s, ω, a) = r(s, a) + γ
∑
s′

P (s|s, a)U(ω, s′), (12)

where the function U is option-value function which means
the expected cumulative reward when choosing option ω on
state s′ and is represented as follows:

U(ω, s′) = (1− βω,θ2(s
′))QΩ(s

′, ω) + βω,θ2(s
′)VΩ(s

′),
(13)



where the termination function β is independent from
option-selection function, therefore uses a set of parameters
θ2. The probability of transition in (12) from (st, ωt) to
(st+1, ωt+1) is represented as follows:

P (st+1, ωt+1|st, ωt) =
∑
a

πωt,θ(a|st)P (st+1|st, a)

((1− βωt,θ2(st+1)1ωt=ωt+1
+ βωt,θ2(st+1)πΩ(ωt+1|st+1

).
(14)

In order to update the parameters of the network, we need the
gradient of Gt over parameters θ of option-selection policies.
According to above formulas, it can be concluded that:

∂QΩ(s, ω)

∂θ
=(

∑
s,ω

∞∑
t=0

γtP (st = s, ωt = ω|s0, ω0))·

(
∑
a

∂πω,θ(a|s)
∂θ

QU (s, ω, a)).

(15)

Similarly, it can be concluded that the gradient of expected
cumulative reward U(s′, ω) over parameters θ2 of termina-
tion functions βω,θ2 can be represented as follows:

∂U(s′, ω)

∂θ2
=− (

∑
s,ω

∞∑
t=0

γtP (st+1 = s′, ωt = ω|s1, ω0))

· (∂βω,θ2(s
′)

∂θ2
)AΩ(s

′, ω),

(16)
where AΩ is the advantage function over options
AΩ(s

′, ω) = QΩ(s
′, ω)− VΩ(s

′).
In HierCoop, for each agent k, there is a local network

to represent the option value function Qk
Ω(s

k, ωk) and the
actor policy ωk and triplet (Ikω, π

k
ω, β

k
ω). The actor policy

consists of intra-option policies, termination functions and
policy over options. We obtain ωk through ϵ-greedy policy
over option-value function Qk

Ω and use gradient descent
backpropagation algorithm to update option actors.

In order to make agents collaborate with each other
instead of making decisions based solely on the local action
observation history of each agent, we introduce a centralized
a value function Qtot which conditions on the global state
and the joint action in HierCoop to optimize the option-value
function of each agent. By using a set of hypernetworks
and mixing networks, Qtot is supposed to have uniform
monotonicity with the local option-value function of agents,
i.e.

∂Qtot

∂Qk
Ω

≥ 0, k ∈ 1, . . . , n. (17)

Therefore, each agent k is allowed to participate in a
decentralised execution solely by choosing greedy actions
with respect to its Qk

Ω. As shown in Fig. 2, the mixing
network takes outputs from the agents as input and mixes
them monotonically, producing the values of Qtot, with
the weights of mixing network being restricted as non-
negative. The weights of the mixing network are produced
by independent hypernetworks which take global state S as
input and generates the weights and the biases of the mixing
network.

Then the following formula is used to compute the loss
and update the local option-value function in critic using
backpropagation methods:

L(θ) =

b∑
i=1

[(ytoti −Qtot(S,Ω; θ))
2]

ytoti = r + γmaxΩ′Qtot(S
′,Ω′; θ−),

(18)

where b is the batch size of transitions sampled from the
replay buffer, S is the global state and Ω is the set of agents
options in corresponding state. Then we can train the critic
network using DQN-like method.

In our proposed architecture, we have effectively ad-
dressed the challenges of resource allocation in heteroge-
neous network scenarios. Specifically, regarding the issue
of shared spectrum resources and mutual coupling between
base stations, the global state needs to be obtained through
the collaboration of agents. The policy network module
in the upper layer aggregates the environmental status in-
formation collected by each base station in a centralized
manner, making joint decisions on the selection of options
for each base station. In order to maximize the benefits of
the entire system, we have introduced a decentralized QMIX
algorithm. The models of the QMIX algorithm include agent
networks, mixing networks, and hyper networks. The agent
network receives observations from the agent as input and
outputs the corresponding Q value. The Mixing network
simultaneously receives the Q value output by all agent
networks and the current global state as input, outputting
the behavioral utility value Q of all agents’ joint behavior
u in the current state Qtot. The weights and biases of the
middle layer neurons in the Mixing network are generated by
the parameter generation network’s hyper network receiving
the current global state.

Meanwhile, in response to the challenge of diverse com-
munication demand patterns and collaborative resource al-
location modes, the lower level of agents is distributed
decision-making, where each base station makes specific
decisions based on their individual options provided by
the upper layer, and updates the network with global re-
wards after the decision. Therefore, multi-agent hierarchical
reinforcement learning algorithm based on option-critic is
used to train multiple agents, corresponding to the decision-
making module of each SBS. The model structure is shown
in Fig. 2.

V. SIMULATION RESULTS

This section presents simulation results for validating our
proposed resource allocation algorithm using multi-agent
hierarchical reinforcement learning for vehicular networks.
The parameters and environment definitions follow the ur-
ban case evaluation methodology defined in Annex A of
3GPP TR 36.885 [11]. Major simulation parameters and the
channel models for V2I links are described in Table I.

During training, each agent shares the network parame-
ters, which means the network can gather information from
all agents and update from the data of all agents. At the lower
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Fig. 2. Network structure of HierCoop

layer of agent, we use RMSProp optimizer with learning rate
set to 0.001. We train each agent’s network for a total of
7,000 episodes, annealing the exploration rate from 1 to 0.02
linearly over the first 2,400 episodes and keeping it constant
thereafter. Additionally, for each training episode, we set
the position and large-scale fading, and compute small-scale
fading at each step. This aids the network in acquiring more
knowledge about underlying fading dynamics and facilitates
stable training.
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Fig. 3. Sum capacity v.s. payload sizes

In Fig. 3 and Fig. 4, we compare the instantaneous sum
capacity and the success probability of payload delivery
of proposed multi-agent hierarchical reinforcement learning
algorithm with following baselines:

1) Random baseline which chooses randomly in the range
of the action space of a base station agent at each time step.

2) The optimal baseline which based on greedy algorithm
and allocate resource for agents to ensure maximum sum rate
and ignore the interference between V2I links. Although the
idealistic baseline cannot be reached in realistic, it provide
a upper bound that illustrate how closely other algorithms
can approach the limit.

Furthermore, we adopt widely used MADRL algorithm as
comparison algorithms:

1) Multi-agent reinforcement learning algorithm QMIX,
compared to our proposed algorithm, it does not have
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Fig. 4. Success probability v.s. payload size

hierarchical structure like option-critic module and every
agent have shared central mixing network to optimize the
network of each agent.

2) Multi-agent reinforcement learning algorithm MAD-
DPG, which is based on actor-critic structure, using a
centralized critic and decentralized actors to train.

Fig. 3 shows the variation of sum capacity with the
payload sizes B increase. It can be indicated from the figure
that all algorithms’ performance drop with growing payload
sizes. Because longer transmission time caused by larger
payload will inevitably lead to more conflict between V2I
links and thus influence the sum capacity. From Fig. 4,
we observe that our proposed HierCoop method achieve
better performance than two baselines and two MADRL
algorithms, representing the robustness against data packet
payload variation.

Fig. 4 shows the variation of success probability of
payload delivery with the payload sizes B increase. It can
be indicated from the figure that all algorithms’ performance
drop with growing payload sizes, except that the optimal
baseline can achieve 100 percent packet delivery throughout
the tested cases. The performance of our proposed HierCoop
method achieves significantly better performance than other
two baseline and MADRL methods and is close to 100
percent success rate.

In Fig. 5, we show the rewards of every training episode
with increasing training iterations to compare the conver-
gence behavior of the above methods. It can be indicated
from the figure that the cumulative rewards per episode
improve faster as training continues and rewards of proposed
algorithm is more than others’, demonstrating the efficiency
of our method, although there are some fluctuations due to
mobility-induced channel fading in vehicular environments.

In order to observe the changes in the policy of our
proposed HierCoop algorithm with communication mode,
we conducted further experiments. Fig. 6 shows the changes
of the output policy from the upper layer to the lower
layer under different V2I packet loads. The figure shows
the difference of distributions of the upper-level strategy, as
delineated by the fluctuations of packet load B.
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VI. CONCLUSION

In this paper, we have developed a resource allocating
algorithm based on hierarchical MADRL for vehicular net-
works with heterogeneous base stations. By modeling SBSs
as agents with hierarchical structure, we combine coarse-
grained collaboration policies between base stations and
fine-grained resource allocation within base stations to deal
with the challenges. We also adopt the centralized training
and distributed implementation framework. Finally, we prove
the efficiency and the significance of our algorithm compared
to other commonly used MADRL methods. Future work
may do further research on resource allocation algorithm
in HetNets with more complex environment and add V2V
links to environment settings to make the scenarios more
general.
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