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Abstract. Sharing intermediate neural features enables agents to effec-
tively see through occlusions. Due to agent diversity, some pioneering
works have studied domain adaption for heterogeneous neural features.
Nevertheless, these works all partially replace agents’ private neural net-
work with newly trained components, which breaks the model integrity
and bidirectional compatibility of agents. In this paper, we consider an
open challenge: how to learn non-destructive domain adapters for hetero-
geneous legacy models to achieve collaborative perception, while compati-
ble with continually emerging new agent models? To overcome this chal-
lenge, we propose the first plug-and-play domain adapter (PnPDA) for
heterogeneous collaborative perception. PnPDA builds a semantic cali-
brator based on contrastive learning to supervise domain gap bridging
without destructing the original models. Semantic converter is learned
to transform the semantic space of features, while semantic enhancer is
utilized to enhance the representation of features. By specifying standard
semantics, new models with PnPDA can easily join existing collabora-
tions. Extensive experiments on OPV2V dataset show that PnPDA non-
destructively bridges the domain gap and outperforms SOTA by 9.13%.
The code is available at: https://github.com/luotianyou349/PnPDA.

Keywords: Heterogeneous collaborative perception · Domain adapter ·
Contrastive learning

1 Introduction

Multi-agent collaborative perception significantly enhances autonomous vehicles’
comprehension of complex road environments [27]. Recent studies primarily em-
ploy feature fusion [11–14] to transmit valuable intermediate features between
autonomous vehicles with low communication overhead, while improving per-
ception precision. Nevertheless, these studies assume that the agent models as
well as their intermediate features are homogeneous.

There exist various agent models in the real world, leading to significant do-
main gap between intermediate features generated by different model architec-
tures and parameters. Utilizing these unintelligible features directly for coopera-
tive perception can cause performance degradation by feature misinterpretation.
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Fig. 1: The differences between heterogeneous cooperative models. (a) re-
trains new encoders for all agents; (b) introduces a task-specific converter, which con-
sequently necessitates re-training the task detection head of the ego agent; (c) our
PnPDA does not require any re-training of encoders or heads, utilizes task-agnostic
converters for non-destructive semantic transformation and employs two-step transfor-
mation to reduce the cost of bidirectional compatibility.

Some pioneering works (e.g ., HEAL [33], MPDA [3]) have emerged to address
this issue. However, as shown in Fig. 1 (a) and (b), these methods either re-train
the encoder of neighbor agents [33] or re-train the detection head of the ego
agent [3], which break the integrity of the original agent models. If the integrity
of the model is compromised, the heterogeneous cooperative perception cannot
achieve backward compatibility with legacy immutable agent models. Besides, if
there comes various future agent models, it requires training multiple adapters
accordingly. This not only necessitates agents to maintain a large number of
adapters but also increases the training cost for new models to join the col-
laborative network. Thus, there is an open challenge facing the heterogeneous
cooperative perception: how to learn non-destructive domain adapters for het-
erogeneous legacy models to achieve collaborative perception, while compatible
with continually emerging new agent models?

To address this challenge, we propose a novel plug-and-play domain adapter
(PnPDA), as shown in Fig. 1 (c), empowering agents with various legacy and
newly emerging models to cooperate without destructing the original models.
PnPDA primarily consists of a semantic converter, a semantic enhancer, a fu-
sion network, and a semantic calibrator used to supervise the operation of con-
verter and enhancer. When ego agent needs to collaborate with heterogeneous
features, the semantic converter transforms the received heterogeneous features
into the ego semantic space, while the semantic enhancer enhances the represen-
tational capacity of the ego features. Subsequently, the fusion network processes
these features with the same semantics. Because the original semantics are pre-
served, the fused features can be directly fed into ego’s original detection head.
To further reduce the overhead of bidirectional compatibility, we train a stan-
dard semantics and design a new collaborative perception process based on this
standard semantics. The newly emerging agents only need to train their own con-
verters independently, allowing them to join the collaborative network through
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two semantic transformations. Specifically, neighbor agents are responsible for
converting their own semantics to standard semantics, while the ego agent is re-
sponsible for converting received standard semantics to ego semantics. As a side
benefit of plug and play, agents using PnPDA can seamlessly switch between
collaborative perception and independent perception modes.

Experiments conducted on a cooperative perception dataset OPV2V [8],
demonstrate that our model achieves an average performance improvement of
9.13% and 6.55% in terms of average precision (AP) at Intersection-over-Union
(IoU) thresholds of 0.5 and 0.7, respectively, compared to state-of-the-art domain
adaptation methods. In summary, our contributions are as follows:

1. We propose the first plug-and-play domain adapter to address the domain
gap among heterogeneous features, training converter and enhancer using
knowledge distillation techniques to achieve semantic transformation.

2. We design a semantic calibrator based on contrastive learning, using task-
agnostic surrogate task supervision for domain adaptation during the pre-
training phase, without the need to modify the original models.

3. We design a novel collaborative perception process to ensure the bidirectional
compatibility of the model. Legacy models and newly emerging models can
easily join the collaborative network through semantic transformation.

2 Related Work

Cooperative perception can be categorized based on the type of collaborative
data among agents, including early fusion using raw point cloud data [27], fea-
ture fusion [1,4,11–13,28,29,36–38] using intermediate features, especially those
generated by point cloud data, and last fusion [2,31,34] using the final detection
results. Feature fusion is currently a focal point of research due to its balanced
performance in terms of data transmission volume and detection accuracy. F-
cooper [13] employs the maxout algorithm for feature fusion. BEVFormer [16]
aggregates BEV features from multiple views and utilizes BEV features as queries
for spatial and temporal interactions. CoBEVT [12] first converts image data to
BEV data and then uses axial attention for feature fusion. To reduce communi-
cation costs, Where2comm [11] determines the required features by constructing
a spatial confidence map instead of global features.

Domain adaptation is primarily used when there is inconsistency in the se-
mantic space of the features that require communication. V2X-ViT [14] addresses
data noise introduced by differences in sampling frequency between agents and
roadside sensors by constructing a directed graph. MPDA [3], as a pioneer work
in addressing semantic heterogeneity, uses heterogeneous features of neighbor
agents as queries for attention computation to achieve cross-domain adaptation.
HEAL [33] addresses the pain point of lacking forward scalability in previous
works by designing a set of standard semantics. Features from different sensors
are integrated into the existing collaborative network by training new encoders.

Contrastive learning forms the cornerstone of our approach. It aims to
establish a fundamental representation by minimizing the semantic similarity
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between positive pairs and maximizing it between negative pairs, facilitating
adaptation to various downstream tasks. Approaches such as [21–23,30] focus on
learning features for the same object from diverse perspectives and distinguish-
ing features of distinct objects to bolster the model’s representation capabilities.
BYOL [24] revolutionizes the paradigm by transforming it from a classification
problem into a prediction problem. PointContrast [18] extends the realm of con-
trastive learning to point cloud data, achieving point-wise contrastive learning,
albeit within the confines of indoor point cloud scenes. ProposalContrast [19] pi-
oneers the application of contrastive learning to the autonomous driving domain,
constructing positive and negative sample pairs at the object level. TARL [20]
employs point cloud aggregation to establish positive and negative sample pairs
by aggregating data from multiple time frames.

3 Approach

In this paper, we consider that the transfer of features during cooperative per-
ception suffers from a huge domain gap due to model diversity. To address this
issue, we propose PnPDA based on contrastive learning, which adapts the het-
erogeneous features received from neighbor agents for domain alignment. Fig. 2
illustrates the overview of PnPDA during the pre-training and fine-tuning stages.
During pre-training stage, PnPDA comprises three main modules: semantic con-
verters, semantic enhancer, semantic calibrator. In fine-tuning stage, the seman-
tic calibrator is discarded, and the original detection head of ego agent is used.

3.1 Overview

Semantic converter and enhancer. Drawing inspiration from knowledge dis-
tillation [26] and DiscoNet [4], By specifying the teacher model and the student
model, the converter can transform the semantics of student features into the
semantic space of the teacher model, while the enhancer can enhance the repre-
sentational capacity of the teacher model, as detailed in Sec. 3.2.

Semantic calibrator. Inspired by DETR [25], using queries to predict the
bounding boxes of targets, we treat the enchanced feature map of the teacher
model as a set of query vectors and the transformed feature map of student
model as key-value pairs, fed into the calibrator. The calibrator updates student
features by computing inter-domain attention to further predict the semantics of
teacher model. Then, we extract pillar-wise features corresponding to the same
object in both feature maps as positive pairs and those corresponding to different
objects as negative pairs to compute its contrastive loss.

Process of collaborative perception. By training a standard semantics,
newly emerging models can join the collaborative network through two seman-
tic transformations. The new models train converters to transform to standard
semantics, while the ego model trains a converter from standard semantics to
ego semantics. Notable, the models’ structures and training methods for these
two converters are consistent, differing only in the selection of input features to
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Fig. 2: Overview of PnPDA. Heterogeneous features undergo domain conversion
with PnPDA before being input into the fusion network. We use the original detection
heads for object detection. When the ego agent does not require collaborative percep-
tion, it can bypass PnPDA and directly input ego features into its detection head.

achieve different semantic transformation effects. In the following sections, ex-
cept for special mention, we will mainly focus on the training process from the
standard semantic space to the ego semantic space.

3.2 Semantic Converter and Enhancer

The input of PnPDA consists of two heterogeneous feature maps. Teacher fea-
tures FT ∈ RH×W×C and student features FS ∈ RH′×W ′×C′

, where H is height,
W is width, and C is the number of channels. These feature maps are generated
by point cloud encoders with different architectures. They exhibit inconsisten-
cies not only in semantic space but also in terms of feature map dimensions and
granularity due to differences in the voxel size of the feature encoders [3], i.e.,
H ̸= H ′,W ̸= W ′, C ̸= C ′. Therefore, upon receiving student features, the first
step is to adjust the size and channel count of the student feature map using a
simple reshaping operation Γ :

F
′

S = Γ (FS) ∈ RH×W×C . (1)

Precisely, we train a max-pooling layer and a 1 × 1 convolution layer to unify
the spatial dimensions and channel counts. This achieves the standardization of
the granularity of the two feature maps for subsequent operations.

After reshaping the heterogeneous features, the teacher model is used to
guide the transformation process of the student model. The student features
undergo semantic transformation using a converter ΦS . To better enable the
student model to understand the experiences of the teacher model, we designed
an enhancer ΘT for the teacher model. Intra-domain attention is employed to
semantically project features, learn their fundamental representations, and align
the semantics of both features into a unified semantic space. It computes both
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local and global attention mechanisms. Applying global attention computation to
teacher features allows for the acquisition of ample scene information in regions
that may be obscured on the original feature map FT due to occlusions and other
issues. This enhances our ability to embed queries or fuse during perception in
the next steps.

Specifically, ΘT will directly utilize the intermediate features FT generated
by the teacher encoder. On the other hand, after processing the student features
FS through Γ , we feed F

′

S into ΦS . As shown in Fig. 3 (a), the architectures of
the converter and enhancer are consistent in the semantic projection part. As a
result, the projection operations for both types of features are entirely identical:

HS = ΦS(F
′

S) ∈ RH×W×C , HT = ΘT (FT ) ∈ RH×W×C . (2)

Then, we use gradient backpropagation to update ΦS , and ΦS dynamically
updates its parameters based on the training loss, learning a transformation
function to project into the semantic space of teacher semantics. ΘT utilizes ex-
ponential moving average (EMA) technique to indirectly update its parameters
based on feedback from ΦS . With EMA, the teacher model’s parameters undergo
exponential moving average at each parameter update, preserving the original
semantics of teacher features as much as possible, providing the student model
with more consistent and reliable knowledge. This approach helps enhance the
generalization performance of the student model, enabling it to mitigate insta-
bility during the training process, thus avoiding issues like model collapse in the
pre-training phase [6].

3.3 Semantic Calibrator

Each pillar-wise feature in the BEV feature map represents spatial information
for a specific region in the real world [16]. Furthermore, we regard the BEV fea-
ture map of the teacher model as a set of BEV query embeddings Q ∈ RH×W×C .
Specifically, the query embedding Qi ∈ R1×C located at i = (x, y) can be seen
as a candidate box querying the corresponding region in the BEV plane.

During pre-training, we employ a calibrator by computing inter-domain at-
tention, with teacher enhanced features HT as query embeddings and student
transformed features HS as key-values, as shown in Fig. 3 (a). Following common
practices, we add 2D absolute position encoding to each query embedding, where
spatial position encoding helps ensure the uniqueness of each query embedding
in the searched region. Simultaneously, we use the same position encoding for
keys, ensuring consistency in the spatial representation of queries and keys, aid-
ing the model in better learning semantic information for the same position. By
computing inter-domain attention, we can establish direct connections between
teacher features and student features. The Pi ∈ R1×C for the new feature map
H

′

S is obtained by querying the representation of HS for corresponding Qi at
same position. Inter-domain attention is calculated as follows:

Pi = Softmax(
QiH

⊤
S√

dHS

)HS , (3)
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contrastive loss

where dHS
represents the dimension size of HS . Subsequently, we use Ψ to con-

catenate all query results to obtain H
′

S , according to the original positions of
the Qi. This process can be expressed as:

H ′
S = ΨO

i (Pi), (4)

where O represents the number of pillar-wise feature in the teacher feature map.
Then, we use a feedforward neural network to enable H

′

S to predict the teacher
feature map, GS = FFN(H

′

S), making the two maps as close as possible.
It is important to note that the semantic calibrator is only used during the

pre-training stage. The purpose of incorporating the calibrator is to assist the
converter and enhancer in learning representations better. Therefore, calibrator
is related to the surrogate task, rather than the downstream task. Introducing
the calibrator to specific downstream task reduces the model’s generalization
ability. Additionally, due to the inherent inconsistency between the two features
arising from different perspectives, calibrator’s goal is to minimize this difference
during the pre-training stage. However, we aim to preserve this disparity during
the inference process, as it can help address issues such as blind spots.

3.4 Loss

During the pre-training phase, we employ contrastive loss to learn semantic in-
formation from heterogeneous features. We treat pillar-wise features for the same
object in two feature maps as positive sample pairs, while pillar-wise features
for different objects are treated as negative sample pairs. The surrogate task
involves maximizing the semantic similarity between positive sample pairs and
minimizing it between negative sample pairs. Using a supervised approach, we
perform sampling operations on the feature maps HT and GS , extracting pillar-
wise features sets for real objects in the scene, denoted as ST ∈ RN×V×C and
SS ∈ RN×V×C , respectively, where N denotes the total number of objects in the
scene, V denotes the number of pillar-wise features representing a single object.
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Sample. For object m, based on the ground truth label (x, y, z, h, w, l, r),
we obtain the coordinates of its detection box’s four vertices on the BEV plane,
denoted as (x1, y1), (x2, y2), (x3, y3), (x4, y4). Taking into account the yaw angle
r, we calculate the potential maximum coverage range of the detection box as
[xmin, xmax], [ymin, ymax] on the x and y axis.

Considering the grid cell size s of the teacher encoder, we calculate the real-
world range represented by each pillar-wise feature. For a pillar-wise feature
Hi = H[xi, yi], its detection range is defined as x ∈ [x0 + s× xi, x0 + s× (xi +
1)], y ∈ [y0 + s × yi, y0 + s × (yi + 1)], where x0 represents the lower bound of
detection on the x-axis in the feature map, and y0 represents the lower bound
of detection on the y-axis. As illustrated in Fig. 3 (b), we consider all pillar-wise
features within the maximum coverage range as the features set representing
object m, denoted as Sm = {H1, H2, . . . ,Hk;Hi = H[xi, yi]}, where xi satisfies
xi ≥ xmin−x0

s , xi ≤ xmax−x0

s − 1, yi satisfies yi ≥ ymin−y0

s , yi ≤ ymax−y0

s − 1.
Inter-object discrimination (IOD). To achieve instance-sensitive repre-

sentation learning for objects, we conducted object-level contrastive learning. In
order to enable the student model to learn more consistent representations from
the teacher model, we take the average of features for each object in ST to obtain
the mean features of objects [20], denoted as S̄T ∈ RN×C . Subsequently, after
applying L2 regularization to S̄T and SS , we calculate the loss to minimize the
semantic space difference between heterogeneous features.

For each pillar-wise feature v in object n, we individually calculate the
temperature-controlled cosine similarity between the sampled pillar-wise fea-
tures sn,vS ∈ RC in the student model and the averaged representation s̄mT ∈ RC

of object m in the teacher model, as:

φn,v,m =
(sn,vS )⊤s̄mT

τ
. (5)

Next, cross-entropy loss is used to maximize the semantic similarity between the
student features and the teacher features for the same object, and to minimize
the semantic similarity for different objects:

LIOD = −
N∑

n=1

V∑
v=1

log

(
exp (φn,v,n)∑N
m exp (φn,v,m)

)
. (6)

During the fine-tuning stage, we utilize common classification loss and regres-
sion loss commonly used in object detection [7]. This joint optimization helps
the model quickly adapt to the cooperative perception task.

3.5 PnPDA in Fine-Tuning

During fine-tuning, PnPDA retain the semantic converter and the semantic en-
hancer and be integrated into a fusion network and original detection head.
During training, the original encoder and detection head parameters of agents
are frozen, ensuring that our model does not affect the perception performance
of agents when cooperative perception is not in use.
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Specifically, in the collaborative process, during the pre-training stage, the
neighbor agents train a converter Φout

S to transform features into standard se-
mantics, while the ego agent trains a converter Φin

S to transform features from
standard semantics to ego semantics. Additionally, an enhancer ΘT is trained
simultaneously. Subsequently, during the fine-tuning stage, the new features are
initially transformed through Φout

S to convert them from own semantics to stan-
dard semantics before being transmitted to the ego agent. The ego agent then
utilizes Φin

S to transform the received features from standard semantics to the
ego semantic space. After the two semantic transformations, the transformed
neighbor features and enhanced ego features are inputted into a fusion network
to generate fused features for the detection head’s use.

4 Experiments

4.1 Dataset

We conducted our experiments on the publicly available large-scale cooper-
ative perception dataset OPV2V [8]. OPV2V provides 3D point cloud data
containing multiple autonomous agents at the same timestamp, eliminating
the impact of misalignment in time on cooperative perception. Utilizing the
OpenCDA [10], a cooperative driving simulation framework and the CARLA [9]
simulator, the dataset generates a total of 10,915 frames, which are split into
train/validation/test sets with quantities of 6,765/1,980/2,170, respectively.

4.2 Experimental Setup

Evaluation metrics. We use 3D detection accuracy as the metric to evaluate
the performance of the model, which is measured by the AP at IoU thresholds
of 0.5 and 0.7. We designed the evaluation range as x ∈ [−140.8, 140.8], y ∈
[−40, 40], consistent with other works in this field [11–14].

Experimental design. In the experiments, we initially randomly select one
agent as the ego agent. Subsequently, all point cloud data is reconstructed to a
unified world coordinate system based on sensor extrinsics, with the ego agent
as the center. During the pre-training stage, we employ early fusion method to
aggregate neighbor agents point cloud data around the ego agent, which allows
the teacher model to capture more comprehensive and accurate information. In
the fine-tuning stage, the ego agent only utilizes its own perception data. The
point cloud data from all neighbor agents is aggregated together to represent the
complete scene, and then it is fed into the neighbor encoder.

To validate the model’s capability to reduce domain gaps in diverse heteroge-
neous scenarios, we design two scenarios involving three different heterogeneous
encoders, as detailed in Tab. 1. We also train two heterogeneous encoders as
newly emerging models for the experiment on forward compatibility, detail in
Sec. 4.4. To ensure that encoders produce effective representations, we train these
encoders in homogeneous scenarios. The two designed scenarios are as follows:
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Table 1: Characteristics of Encoder. The model differences among five encoders
and their detection performance in homogeneous scenes.

Encoder Voxel
Resolution Params (K) 2D/3D

CNN Layers
Half Lidar

Cropping Range (x&y) AP@0.5

pp8 0.8, 0.8, 4 1035 10/0 [140.8, 40] 85.9
pp4 0.4, 0.4, 4 6578 19/0 [140.8, 40] 87.2
pp6 0.6, 0.6, 4 6578 19/0 [153.6, 38.4] 86.5
vn4 0.4, 0.4, 0.4 333 0/3 [140.8, 40] 85.5
vn6 0.6, 0.6, 0.4 333 0/3 [153.6, 38.4] 57.9

1. Hetero Scenario 1: The ego agent uses the PointPillar [7] encoder pp8 to
process point cloud data, while neighbor agent uses the PointPillar encoder
pp4. Although the basic architecture of the two encoders is similar, there
are differences in design details and parameter scales, representing a scenario
with minor domain gap between features.

2. Hetero Scenario 2: The ego agent uses the PointPillar encoder pp8 to process
point cloud data, while neighbor agent uses the VoxelNet [15] encoder vn4.
These two encoders have significant differences in model design, correspond-
ing to a scenario with substantial domain gap between features.

In the experiments, we reload and freeze agents’ encoder and detection head
ensuring consistent semantic features before and after the experiment. Moreover,
we apply various feature fusion algorithms in each environment to verify our
model’s effectiveness and flexibility.

Implementation details. For the pre-trained encoders, detection heads and
fusion network, we follow the same hyperparameters as their respective works.
In the pre-training stage, we set τ in temperature-controlled cosine similarity to
0.1, and EMA momentum between the converter and enhancer to 0.8. Our initial
learning rate is set to 0.001, using Adam as the optimizer, and the learning rate
is decayed by 0.1 at the 10th and 50th epochs. In the fine-tuning stage, we use
a similar training approach.

4.3 Detection Performance

We intuitively demonstrate the model’s ability to reduce the domain gap be-
tween heterogeneous features by evaluating its detection performance in two
heterogeneous collaborative scenarios. We first train adapters from pp4 to pp8
and from vn4 to pp8 during the pre-training stage, and then fine-tune these
adapters for the objection detection task. To validate the effectiveness of PnPDA,
experiments compare PnPDA with the existing heterogeneous feature domain
adaptation method MPDA [3]. Another framework for heterogeneous feature
collaborative perception, HEAL [33], primarily focuses on collaborating differ-
ent sensor data, thus requiring re-training of agents’ encoders. This makes it
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Table 2: 3D detection performance comparison on OPV2V. Experiments com-
pare the detection performance between three cross-domain adaptation methods using
different feature fusion networks in two heterogeneous scenes, using the AP with IOU
of 0.5 and 0.7 as metrics.

Scenario Adapter Fusion Net

F-cooper Where2comm CoBEVT V2X-ViT

Hetero 1
HETE 67.0/53.8 74.6/60.1 75.7/58.9 82.1/70.6
MPDA 61.8/41.7 75.7/62.8 82.9/68.1 74.0/54.0

PnPDA (ours) 78.0/56.4 75.9/64.0 85.2/71.2 84.6/70.9

Hetero 2
HETE 54.3/39.3 57.5/40.2 76.9/54.1 77.6/56.6
MPDA 57.7/41.1 62.7/49.8 75.3/58.3 56.6/42.1

PnPDA (ours) 65.5/43.4 68.6/42.8 80.6/60.9 81.3/60.7

unfair to directly compare with PnPDA. Additionally, a simple domain adapter
is designed, called HETE, which utilizes only a max-pooling layer and a 1 × 1
convolution layer for aligning spatial dimensions and feature channels, serving
as the baseline. To ensure experimental fairness, in the same scenarios, the same
encoder and detection head weights are loaded, and the same structured feature
fusion network is used.

Tab. 2 shows the detection results of PnPDA and other domain adapters
in different heterogeneous scenarios and with various feature fusion networks.
In Hetero Scenario 1 where the encoder structures are the same, and the do-
main gap of heterogeneous features are small, a simple adaptation method can
achieve good experimental results. However, in Hetero Scenario 2, where there
is significant domain gap between features, PnPDA has a significant advantage
compared to the baseline, with an average performance improvement of 7.43%
and 4.40% in terms of AP at IoU thresholds of 0.5 and 0.7. Additionally, the
adapter of MPDA is task-specific, so freezing the detection head limits its se-
mantic adaptation capability. In both scenarios, experiments demonstrate that
our PnPDA achieves an average performance improvement of 9.13% and 6.55%
in terms of AP at IoU thresholds of 0.5 and 0.7, respectively, compared to SOTA
domain adaptation methods. This significantly demonstrates PnPDA’s ability to
semantically transform heterogeneous features. From the experimental results,
we also observe that fusion networks such as CoBEVT [12] and V2X-ViT [14]
generally outperform fusion algorithms like F-cooper [13] and Where2comm [11].
We believe this is because CoBEVT and V2X-ViT have many learnable modules
that also have a certain degree of domain adaptation capability.

4.4 Forward Compatibility

To validate the collaborative perception process for providing forward compati-
bility to PnPDA, experiments are conducted using pp8 as the ego model and pp4
as the standard model, while setting vn6 and pp6 as the newly emerging models.
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Firstly, both new models underwent training to learn the adapters for converting
their own semantic space to standard semantic space. And ego agent training
involves both a converter from standard semantics to ego semantics and an en-
hancer. Subsequently, during fine-tuning, only converter and enhancer of the
new models’ adapter are retained and integrated with the ego agent’s converter,
enhancer, fusion network, and detection head. Simultaneously, experiments in-
cluded training MDPA and PnPDA as comparative experiments, utilizing pp8
as the ego model, pp6 and vn6 as neighbor models for training from scratch.

The experiments, presented in Tab. 3, reveal that the new collaborative per-
ception process supports the integration of any newly emerging model with ac-
ceptable performance degradation, despite undergoing two semantic conversions.
Importantly, when the newly emerging model is vn6, the perception performance
of the standard vn6 model, surpasses that of the standard pp4 model, indicat-
ing performance degradation when the newly added model exhibits substantial
domain gap from the standard model.

Table 3: Forward compatibility of PnPDA. PnPDA* directly trains a new con-
verter from the ego model to the newly added model, while PnPDA trains two con-
verters according to the process. (vn4)* represents using vn4 as the standard model.

PnPDA* MPDA PnPDA

pp8-pp6 75.1 57.5 74.6
pp8-vn6 60.5 57.6 55.0/59.2(vn4)*

4.5 Impact of Neighbor Agent Quantity

In this experiment, the influence of the number of neighbor agents, varied from
1 to 6, on the performance of the collaborative perception model is investigated.
All neighbor agents use pp4 as the encoder, while the ego agent uses pp8 as the
encoder, and V2X-ViT is used as the fusion network. Since in this experiment,
neighbor features are not fused directly through point cloud, as stated in Sec. 4.2,
but are first transmitted to the ego agent for semantic transformation and feature
fusion, to better simulate real collaborative scenarios, the detection performance
may be weaker than the results in Sec. 4.3.

The results, as show in Fig. 4, indicate that increasing the number of neigh-
boring agents leads to improved AP. This also demonstrates that our model
supports multiple agents to collaborate in perception simultaneously.

4.6 Efficiency of Enhancer

The dedicated experiment was conducted to validate the impact of using a single
enhancer on detection performance. The detection accuracy for three encoders
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Fig. 4: The impact of the number of
neighbor agents on perception perfor-
mance.

Fig. 5: The improvement in single-
agent detection performance achieved
by introducing enhancer.

and the detection accuracy after adding enhancer were independently trained.
The results in Fig. 5 demonstrate the optimization effect of enhancer on the
representational capacity of encoder output features. The detection models with
added enhancer show average improvements of 5.7%/3.9% in terms of AP at IoU
thresholds of 0.5 and 0.7, respectively.

4.7 Ablation Studies

To investigate the roles of each component in cooperative perception, we obtain
the AP at IOU of 0.5 for different component combination. We conducted abla-
tion experiments in Hetero Scenario 1, with the F-cooper fusion network. Our
baseline model utilizes Contrastive Learning (CL) for pre-training and aban-
dons the calibrator during the fine-tuning stage. Tab. 4 demonstrates that each
component contributes to performance improvement. Particularly, the converter
significantly boosts performance by 6.8%. Removing enhancer weakens the rep-
resentation capability of ego features, leading to a 5.9% drop in detection perfor-
mance, further confirming our conclusion in Sec. 3.2. After introducing calibrator
during fine-tuning, the model’s detection performance declines by 14.2%. But not
using the calibrator during the pre-training stage would also lead to a decrease
in performance. Because the calibrator is task-agnostic and not specific to par-
ticular downstream tasks, as discussed in Sec. 3.3. Finally, training the model
from scratch without pre-trained weights also results in a drop in accuracy.

4.8 Qualitative Visualizations

We average the absolute values of all channels to visualize the feature maps and
study their patterns. As shown in Fig. 6 (a) and Fig. 6 (c), there is a significant
difference in the original semantics of the two features. For PointPillar, the target
positions on the feature map have relatively lower values, while for VoxelNet,
it is exactly the opposite, with lower feature values in the background regions.
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Table 4: Ablation experiments to validate the effectiveness of components in the
model. CL represents pre-training using contrastive learning. ♢ indicates that the cal-
ibrator is not used during the pre-training stage.

CL calibrator enhancer converter AP@0.5
✓ ✓ ✓ 78.0
✓ ✓ ✓ ✓ 63.8
✓ ✓ 72.1
✓ ✓ ✓ 61.6
✓ ✓ ✓ 53.8
✓ ✓ 71.2
♢ ✓ ✓ 74.4

✓ ✓ 73.3

However, after passing through the adapter, as shown in Fig. 6 (b) and Fig. 6 (d),
the patterns of the two features have clearly become closer, while still retaining
the original pattern of the ego agent.

(a) Pointpillar feature (b) Enhanced Pointpillar feature

(c) VoxelNet feature (d) Transformed VoxelNet features

Fig. 6: Visualization of intermediate features before and after domain adap-
tion. Brighter regions correspond to higher feature values.

5 Conclusions

In this work, we attempt to address the domain adaptation among heterogeneous
features using contrastive learning. Through carefully designed plug-and-play
domain adapter, we successfully achieve cooperative perception for heteroge-
neous features without disrupting the original agent detection network. We also
design a new collaborative process to support the dynamic joining of agents.
This enables PnPDA to excel in collaborative performance, model protection,
and bidirectional compatibility. We validate the effectiveness of the model on
OPV2V dataset. However, PnPDA’s limitation lies in its ability to handle only
point cloud features. In future work, we will explore the use of multi-modality
techniques to enable PnPDA to handle image features.
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